Limit search to available items
Book Cover
E-book

Title Modeling, characterization and production of nanomaterials : electronics, photonics and energy applications / edited by Vinod K. Tewary and Yong Zhang
Published Cambridge, UK : Woodhead Publishing, 2015

Copies

Description 1 online resource
Series Woodhead Publishing series in electronic and optical materials ; number 73
Woodhead Publishing series in electronic and optical materials ; no. 73.
Contents Front Cover; Modeling, Characterization and Production of Nanomaterials: Electronics, Photonics and Energy Applications; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Part One: Modeling techniques for nanomaterials; Chapter 1: Multiscale modeling of nanomaterials: recent developments and future prospects; 1.1. Introduction; 1.2. Methods; 1.2.1. Quantum mechanics; 1.2.1.1. Introduction; 1.2.1.2. Hartree-Fock theory; 1.2.1.3. Electron-correlated methods; 1.2.1.4. Density functional theory; 1.2.1.5. Other methods
1.2.2. Classical mechanics1.2.2.1. Molecular mechanics; 1.2.2.2. Molecular dynamics; 1.2.2.3. Monte Carlo; 1.2.2.4. Forcefields; 1.2.2.5. Applications of classical tools to nanomaterials; 1.2.3. Mesoscale; 1.2.3.1. Models; 1.2.3.2. Forcefields; 1.2.3.3. Potentials; 1.2.3.4. Dynamics; 1.2.3.5. Parameterization; 1.2.4. Multiscale modeling; 1.2.4.1. Hierarchical methods; 1.2.4.2. Hybrid methods; 1.2.4.3. QM/MM; 1.3. Nanomaterials; 1.3.1. Polymer nanocomposites; 1.3.2. Inorganic nanostructures; 1.3.2.1. Zeolites; 1.3.2.2. Metal-organic frameworks (MOFs); 1.3.2.3. Catalysts; 1.3.3. Soft matter
1.3.3.1. Lipids1.3.3.2. Surfactants and polymers; 1.3.3.3. Peptide assemblies; 1.4. Application examples; 1.4.1. Polymer nanodielectrics; 1.4.2. Lithium-ion batteries; 1.4.3. Reinforced resins for aerospace; 1.5. Conclusion; References; Chapter 2: Multiscale Green's functions for modeling of nanomaterials ; 2.1. Introduction; 2.1.1. Need for bridging length scales; 2.1.2. Bridging the time scales; 2.1.3. Application; 2.2. Green's function method: the basics; 2.3. Discrete lattice model of a solid; 2.4. Lattice statics Greens function; 2.5. Multiscale Green's function
2.6. Causal Green's function for temporal modeling2.7. Application to 2D graphene; 2.8. Conclusions and future work; Acknowledgments; References; Chapter 3: Numerical simulation of nanoscale systems and materials; 3.1. Introduction; 3.2. Molecular statics and dynamics: an overview; 3.3. Static calculations of strain due to interface; 3.4. Dynamic calculations of kinetic frictional properties; 3.5. Fundamental properties of dynamic ripples in graphene; 3.6. Conclusions and general remarks; Disclaimer; Acknowledgments; References; Part Two: Characterization techniques for nanomaterials
Chapter 4: TEM studies of nanostructures4.1. Introduction; 4.2. Polarity determination and stacking faults of 1D ZnO nanostructures; 4.2.1. Polarity determination in 1D ZnO nanostructures; 4.2.2. Stacking-fault-induced growth of ultrathin ZnO nanobelts; 4.3. Structure analysis of superlattice nanowire by TEM: a case of SnO2 (ZnO:Sn)n nanowire; 4.4. TEM analysis of 1D nanoheterostructure; 4.4.1. Axially heterostructured nanowires; 4.4.2. Coaxial core-shell nanowires; 4.4.2.1. Highly lattice-mismatched ZnO/ZnSe and ZnO/ZnS core-shell nanowires
Summary Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications
Notes Includes index
Bibliography Includes bibliographical references at the end of each chapters and index
Notes Online resource; title from PDF title page (ScienceDirect, viewed March 30, 2015)
Subject Nanostructured materials.
TECHNOLOGY & ENGINEERING -- Engineering (General)
TECHNOLOGY & ENGINEERING -- Reference.
Nanostructured materials
Form Electronic book
Author Tewary, Vinod, editor
Zhang, Yong, editor
ISBN 9781782422358
1782422358