Limit search to available items
Book Cover
E-book
Author Tiwari, G. N., author

Title Handbook of Solar Energy : Theory, Analysis and Applications / G.N. Tiwari, Arvind Tiwari, Shyam
Published Singapore : Springer, [2016]
©2016

Copies

Description 1 online resource (xxv, 764 pages) : illustrations (some color), portrait
Series Energy Systems in Electrical Engineering, 2199-8590
Energy Systems in Electrical Engineering. 2199-8582
Contents 1. Solar Radiation. 1.1. General Introduction. 1.2. Sun-Earth Angles. 1.3. Energy and Environment. 1.4. Instruments to Measure Solar Radiation. 1.5. Solar Radiation on a Horizontal Surface. 1.6. Solar Radiation on an Inclined Surface
2. Daylighting. 2.1. Introduction. 2.2. History of Daylighting. 2.3. Components of Daylighting (Natural Light). 2.4. Different Concept of Daylighting. 2.5. Experiments on Skylight for Natural Lighting for a Mud House: A Case Study
3. Law of Thermodynamics and Element of Heat Transfer. 3.1. Introduction. 3.2. Law of Thermodynamics. 3.3. Element of Heat Transfer. 3.4. Overall Heat-Transfer Coefficient
4. Solar Cell Materials, Photovoltaic Modules and Arrays. 4.1. Introduction. 4.2. Fundamentals of Semiconductor and Solar Cells. 4.3. Generation of Solar Cell (Photovoltaic) Materials. 4.4. Photovoltaic (PV) Module and PV Array. 4.5. Photovoltaic Thermal (PVT) Systems. 4.6. Degradation of Solar Cell Materials. 4.7. Additional Solved Examples
5. Flat-Plate Collectors. 5.1. Introduction. 5.2. Flat-Plate Collector. 5.3. Flat-Plate Collector Testing. 5.4. Heat-Transfer Coefficients. 5.5. Optimization of Heat Losses. 5.6. Fin Efficiency. 5.7. Analysis of Flat-Plate Collectors. 5.8. Combination of FPCs. 5.9. Photovoltaic Thermal (PVT) Water Collector. 5.10. Effect of Heat Capacity in a Flat-Plate Collector. 5.11. Optimum Inclination of the Flat-Plate Collector. 5.12. Effect of Dust in the Flat-Plate Collector
6. Solar Concentrator. 6.1. Introduction. 6.2. Characteristic Parameters. 6.3. Classification of Solar Concentrators. 6.4. Types of Solar Concentrator. 6.5. Theoretical Solar Image. 6.6. Thermal Performance. 6.7. Solar Concentration Ratio (C). 6.8. Solar Tracking. 6.9. Materials for Solar Concentrators. 6.10. Photovoltaic Thermal (PVT) Concentrator
7. Evacuated Tubular Solar Collector (ETSC). 7.1. Introduction. 7.2. Evacuated Tubular Solar Collectors (ETSC). 7.3. Williams Evacuated Tubular Solar Collector (ETSC). 7.4. Analysis of Owens-Illinois (OI) Tubular Solar Collector. 7.5. Evacuated Tubular Solar Collector with Heat Pipe
8. Solar Water-Heating Systems. 8.1. Introduction. 8.2. Collection-Cum-Storage Solar Water Heater. 8.3. Solar Water-Heating System. 8.4. Detailed Analysis of a Double-Loop Solar Water-Heating System. 8.5. Heat Collection in an Insulated Storage Tank
9. Solar Flat-Plate Air Collectors. 9.1. Introduction. 9.2. Classification of Solar Air Heaters. 9.3. Conventional Nonporous Solar Air Heaters. 9.4. Double-Exposure Solar Air Heaters. 9.5. Solar Air Heater with Flow on Both Sides of the Absorber. 9.6. Two-Pass Solar Air Heater. 9.7. Effect of Fin. 9.8. Reverse-Absorber Air Heater. 9.9. Solar Air Heaters with Porous Absorbers. 9.10. Testing of a Solar Air Collector. 9.11. Parametric Studies
10. Solar House. 10.1. Introduction. 10.2. Physical Parameters. 10.3. Physiological Parameters. 10.4. Intermediate Parameters. 10.5. World Climatic Zone. 10.6. Solair Temperature. 10.7. Thermal Gain. 10.8. Thermal Cooling. 10.9. Time Constant. 10.10. Approximate Methods. 10.11. Solar Load-Ratio Method
11. Solar Cooling. 11.1. Introduction. 11.2. Solar Air Conditioning. 11.3. Comparison of Different Solar Cooling Technologies
12. Solar Crop Dryers. 12.1. Importance of Solar-Drying. 12.2. Solar Crop-Drying. 12.3. Deep-Bed Grain Drying. 12.4. Energy Balance for Indirect Solar Drying (ISD) Systems
13. Solar Distillation. 13.1. Importance of Solar Distillation. 13.2. Working Principle of Solar Distillation. 13.3. Thermal Efficiency. 13.4. Basic Heat Transfer. 13.5. Other Designs of Passive/Active Solar Stills. 13.6. Heat and Mass Transfer: A New Approach. 13.7. Thermal Modelling. 13.8. Effect of Design and Climatic Parameters
14. Energy Analysis. 14.1. Introduction. 14.2. Embodied-Energy Analysis. 14.3. Energy Density (Intensity). 14.4. Overall Thermal Energy. 14.5. Energy-Payback Time (EPBT). 14.6. Embodied Energy and Payback Time of Solar Systems
15. Energy Storage. 15.1. Introduction. 15.2. Sensible Heat Storage. 15.3. Latent-Heat Storage (LHS). 15.4. Chemical-Energy Storage (CES). 15.5. Solar Battery. 15.6. PV Pumped-Storage Hydroelectricity
16. Solar-Power Generation. 16.1. Introduction. 16.2. Power Generation by PV Modules. 16.3. Concentrated Solar Power (CSP)
17. Other Applications of Solar Energy. 17.1. Introduction. 17.2. Fossil Fuel. 17.3. Box-Type Solar Cooker. 17.4. Swimming Pool Heating. 17.5. Solar Heating of Biogas Plant. 17.6. Greenhouse. 17.7. Solar Ponds
18. Energy Conservation. 18.1. Introduction. 18.2. Energy Efficiency. 18.3. Solar Fraction. 18.4. Energy Conservation in Building. 18.5. Energy Conservation in Cooking. 18.6. Energy Conservation in Transportation. 18.7. Commercial Sector. 18.8. Industrial Sector
19. Exergy Analysis. 19.1. Introduction. 19.2. Exergy Analysis. 19.3. Energy Matrices. 19.4. Energy Matrices of Different Solar Systems. 19.5. CO₂ Emissions. 19.6. Carbon Credit (C-Credit [CC])
20. Life-Cycle Cost Analysis. 20.1. Introduction. 20.2. Cost Analysis. 20.3. Cash Flow. 20.4. Capitalized Cost. 20.5. Net Present Value (NPV). 20.6. Analytical Expression for Payout Time. 20.7. Benefit-Cost Analysis. 20.8. Internal Rate of Return (IRR). 20.9. Effect of Depreciation -- [Appendices I-IX] -- Glossary
Summary This handbook aims at providing a comprehensive resource on solar energy. Primarily intended to serve as a reference for scientists, students and professionals, the book, in parts, can also serve as a text for undergraduate and graduate course work on solar energy. The book begins with availability, importance and applications of solar energy, definition of sun and earth angles and classification of solar energy as thermal and photon energy. It then goes on to cover day lighting parameters, laws of thermodynamics including energy and exergy analysis, photovoltaic modules and materials, PVT collectors, and applications such as solar drying and distillation. Energy conservation by solar energy and energy matrices based on overall thermal and electrical performance of hybrid system are also discussed. Techno-economic feasibility of any energy source is the backbone of its success and hence economic analysis is covered. Some important constants, such as exercises and problems increase the utility of the book as a text
Bibliography Includes bibliographical references
Subject Solar energy -- Handbooks, manuals, etc
TECHNOLOGY & ENGINEERING -- Mechanical.
Solar energy
Genre/Form handbooks.
Handbooks and manuals
Handbooks and manuals.
Guides et manuels.
Form Electronic book
Author Tiwari, Arvind (Professor of Electronic Engineering), author.
Shyam (Mechanical engineer), author.
ISBN 9789811008078
9811008078