Limit search to available items
Book Cover
E-book
Author Gilbert, Robert P

Title Applications of Homogenization Theory to the Study of Mineralized Tissue
Published Milton : CRC Press LLC, 2015

Copies

Description 1 online resource (298 p.)
Contents Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1: Introductory Remarks -- 1.1. Some functional spaces -- 1.1.1. Periodic functions -- 1.1.2. Lax-Milgram Theorem -- 1.2. Variational formulation -- 1.3. Geometry of the two-phase composite -- 1.4. Two-scale convergence method -- 1.5. The concept of a homogenized equation -- 1.6. Two-scale convergence with time dependence -- 1.7. Potential and solenoidal fields -- Chapter 2: The Homogenization Technique Applied to Soft Tissue -- 2.1. Homogenization of soft tissue
2.2. Galerkin approximations -- 2.3. Derivation of the effective equation of u0 -- Chapter 3: Acoustics in Porous Media -- 3.1. Introduction -- 3.2. diphasic macroscopic behavior -- 3.2.1. Derivation of the effective equations for u0 -- 3.3. Well-posedness for problems (3.2.48) and (3.2.55) -- 3.4. The slightly compressible diphasic behavior -- Chapter 4: Wet Ionic, Piezoelectric Bone -- 4.1. introduction -- 4.2. Wet bone with ionic interaction -- 4.2.1. Nondimentionalized equations -- 4.2.2. Fluid equations with slight compressibility -- 4.2.3. Nernst-Plank equations
4.3. Homogenization using formal power series -- 4.4. Wet bone without ionic interaction -- 4.4.1. Reuss bound on the energy -- 4.4.2. Fluid displacement -- 4.4.3. Kinetic energy -- 4.4.4. Constitutive equations -- 4.5. Electrodynamics -- 4.5.1. Electrically isotropic solid -- 4.5.2. Electromagnetism in the fluid -- 4.5.3. Effective electromagnetic -- Chapter 5: Viscoelasticity, and Contact Friction between the Phases -- 5.1. Kelvin-Voigt Material -- 5.1.1.Two-scale convergence approach -- 5.2. Rigid particles in a visco-elastic medium -- 5.3. Equations of motion and contact conditions
5.3.1. Boundary conditions -- 5.3.2. Approximation of the contact conditions -- 5.3.3. Microscale equations -- 5.4. Two-scale expansions and formal homogenization -- 5.5. Model case I: Linear contact conditions -- 5.5.1. Cell problems -- 5.5.2. Averaged equations for Model I -- 5.6. Model II: Quadratic contact conditions -- 5.6.1. Averaged equation for Model II -- 5.7. Model III: Power type contact condition -- 5.7.1. Contact conditions, ansatz and cell problems -- 5.7.2. The relation between x 1 and x 0 -- 5.7.3. Effective stress -- 5.7.4. Effective drag force
Chapter 6: Acoustics in a Random Microstructure -- 6.1. Introduction -- 6.2. Stochastic two-scale limits -- 6.3. Periodic approximation -- Chapter 7: Non-Newtonian Interstitial Fluid -- 7.1. The slightly compressible polymer: Microscale problem -- 7.2. A priori estimates -- 7.3. Two-scale system -- 7.4. Description of the effective stress -- 7.5. Effective equations -- Chapter 8: Multiscale FEM for the Modeling of Cancellous Bone -- 8.1. Concept of the multiscale FEM -- 8.2. Microscale: The RVE proposal and effective properties -- 8.2.1. Modeling of the RVE for cancellous bone
Notes Description based upon print version of record
8.2.2. Modeling of the solid phase
Form Electronic book
Author Vasilic, Ana
Klinge, Sandra
Panchenko, Alex
Hackl, Klaus
ISBN 9780429533242
0429533241