Limit search to available items
Book Cover
E-book
Author Naqui, Jordi, author

Title Symmetry properties in transmission lines loaded with electrically small resonators : circuit modeling and applications / Jordi Naqui
Published Cham : Springer, [2016]
©2016

Copies

Description 1 online resource
Series Springer theses : recognizing outstanding Ph. D. research
Springer theses.
Contents Parts of this thesis have been published in the following articles:; Journals; Conferences; Workshops; Supervisor's Foreword; Acknowledgments; Contents; About the Author; Acronyms; 1 Introduction; 1.1 Motivations; 1.2 Organization; 1.3 Funding; 2 Fundamentals of Planar Metamaterials and Subwavelength Resonators; 2.1 Electromagnetic Metamaterials; 2.1.1 Material Classification; 2.1.2 Left-Handed Media; 2.2 Transmission-Line Metamaterials; 2.2.1 Application of the Transmission-Line Theory to Metamaterials; 2.2.2 Composite Right-/Left-Handed (CRLH) Transmission Lines
2.2.3 CL-Loaded and Resonant-Type Approaches2.2.4 Resonant-Type Single-Negative Transmission Lines; 2.2.5 Discussion About Homogeneity and Periodicity; 2.3 Metamaterial-Based Resonators; 2.3.1 Split-Ring Resonator (SRR); 2.3.2 Double-Slit Split-Ring Resonator (DS-SRR); 2.3.3 Folded Stepped-Impedance Resonator (FSIR); 2.3.4 Electric Inductive-Capacitive (ELC) Resonator ; 2.3.5 Complementary Resonators; 2.4 Magneto- and Electro-Inductive Waves; 2.4.1 Magneto-Inductive Waves in Arrays of Magnetically-Coupled Resonators; 2.4.2 Electro-Inductive Waves in Arrays of Electrically-Coupled Resonators
4.1 On the Symmetry Properties of Transmission Lines4.2 On the Alignment of Symmetry Planes; 4.2.1 SRR- and CSRR-Loaded Coplanar Waveguides; 4.2.2 SRR- and CSRR-Loaded Differential Microstrip Lines; 4.2.3 ELC- and MLC-Loaded Differential Microstrip Lines; 4.3 On the Misalignment of Symmetry Planes; 4.3.1 SRR- and FSIR-Loaded Coplanar Waveguides; 4.3.2 SIR-Loaded Microstrip Lines; 4.3.3 ELC-Loaded Coplanar Waveguides; 4.3.4 MLC-Loaded Microstrip Lines; 4.4 On the Generalization of Symmetry Rupture; 4.4.1 Microstrip Lines Loaded with Pairs of SISSs
4.4.2 Coplanar Waveguides Loaded with Pairs of SRRsReferences; 5 Application of Symmetry Properties to Common-Mode Suppressed Differential Transmission Lines; 5.1 Introduction; 5.2 Symmetry-Based Selective Mode Suppression; 5.3 Common-Mode Suppressed Differential Microstrip Lines; 5.3.1 CSRR- and DS-CSRR-Loaded Differential Microstrip Lines; 5.3.2 ELC- and MLC-Loaded Differential Microstrip Lines; References; 6 Application of Symmetry Properties to Microwave Sensors; 6.1 Introduction; 6.2 Symmetry-Based Sensing; 6.2.1 Coupling-Modulated Resonance
Summary This book discusses the analysis, circuit modeling, and applications of transmission lines loaded with electrically small resonators (mostly resonators inspired by metamaterials), focusing on the study of the symmetry-related electromagnetic properties of these loaded lines. It shows that the stopband functionality (resonance) that these lines exhibit can be controlled by the relative orientation between the line and the resonator, which determines their mutual coupling. Such resonance controllability, closely related to symmetry, is essential for the design of several microwave components, such as common-mode suppressed differential lines, novel microwave sensors based on symmetry disruption, and spectral signature radio-frequency barcodes. Other interesting aspects, such as stopband bandwidth enhancement (due to inter-resonator coupling, and related to complex modes) and magnetoelectric coupling between the transmission lines and split-ring resonators, are also included in the book
Notes Doctoral Thesis accepted by Universitat Autònoma de Barcelona, Spain
Bibliography Includes bibliographical references
Notes English
Vendor-supplied metadata
Subject Microwave transmission lines.
Electric resonators.
Electronic devices & materials.
Communications engineering -- telecommunications.
Microwave technology.
TECHNOLOGY & ENGINEERING -- Mechanical.
Electric resonators
Microwave transmission lines
Form Electronic book
ISBN 9783319245669
331924566X