Limit search to available items
Book Cover
E-book
Author Nagourney, Warren G., author

Title Quantum electronics for atomic physics and telecommunication / Warren Nagourney
Edition Second edition
Published Oxford : Oxford University Press, 2014

Copies

Description 1 online resource : illustrations (black and white)
Series Oxford graduate texts
Oxford graduate texts.
Contents Gaussian beams -- Optical resonators : geometrical properties -- Energy relations in optical cavities -- Optical cavity as frequency discriminator -- Laser gain and some of its consequences -- Laser oscillation and pumping mechanisms -- Descriptions of specific CW laser systems -- Laser gain in a semiconductor -- Semiconductor diode lasers -- Guided-wave devices and fiber lasers -- Mode-locked lasers and frequency metrology -- Laser frequency stabilization and control systems -- Atomic and molecular discriminants -- Nonlinear optics -- Frequency and amplitude modulation
Machine generated contents note: 1. Gaussian beams -- 1.1. Introduction -- 1.2. The paraxial wave equation -- 1.3. Gaussian beam functions and the complex beam parameter, q -- 1.4. Some Gaussian beam properties -- 1.5. The phase term: Gouy phase -- 1.6. Simple transformation properties of the complex beam parameter -- 1.7. Matrix formulation of paraxial ray optics: ABCD rule -- 1.8. Further reading -- 1.9. Problems -- 2. Optical resonators -- geometrical properties -- 2.1. Introduction -- 2.2. The two-mirror standing-wave cavity -- 2.3. Stability -- 2.4. Solution for an arbitrary two-mirror stable cavity -- 2.5. Higher-order modes -- 2.6. Resonant frequencies -- 2.7. The traveling-wave (ring) cavity -- 2.8. Astigmatism in a ring cavity -- 2.9. Mode matching -- 2.10. Beam quality characterization: the M2 parameter -- 2.11. Further reading -- 2.12. Problems -- 3. Energy relations in optical cavities -- 3.1. Introduction -- 3.2. Reflection and transmission at an interface
Note continued: 3.3. Reflected fields from standing-wave cavity -- 3.4. Internal (circulating) field in a standing-wave cavity -- 3.5. Reflected and internal intensities -- 3.6. The resonant character of the reflected and circulating intensities -- 3.7. Impedance matching -- 3.8. Fields and intensities in ring cavity -- 3.9.A novel reflective coupling scheme using a tilted wedge -- 3.10. Photon lifetime -- 3.11. The quality factor, Q -- 3.12. Relation between Q and finesse -- 3.13. Alternative representation of cavity loss -- 3.14. Experimental determination of cavity parameters -- 3.15. Farther reading -- 3.16. Problems -- 4. Optical cavity as frequency discriminator -- 4.1. Introduction -- 4.2.A simple example -- 4.3. Side of resonance discriminant -- 4.4. The manipulation of polarized beams: the Jones calculus -- 4.5. The polarization technique -- 4.6. Frequency modulation -- 4.7. The Pound -- Drever -- Hall approach -- 4.8. Frequency response of a cavity-based discriminator
Note continued: 4.9. Further reading -- 4.10. Problems -- 5. Laser gain and some of its consequences -- 5.1. Introduction -- 5.2. The wave equation -- 5.3. The interaction term -- 5.4. The rotating-wave approximation -- 5.5. Density matrix of two-level system -- 5.6. The classical Bloch equation -- 5.7. Connection between two-level atom and spin-1/2 system -- 5.8. Radiative and collision-induced damping -- 5.9. The atomic susceptibility and optical gain -- 5.10. The Einstein A and B coefficients -- 5.11. Doppler broadening: an example of inhomogeneous broadening -- 5.12.Comments on saturation -- 5.13. Further reading -- 5.14. Problems -- 6. Laser oscillation and pumping mechanisms -- 6.1. Introduction -- 6.2. The condition for laser oscillation -- 6.3. The power output of a laser -- 6.4. Pumping in three-level and four-level laser systems -- 6.5. Laser oscillation frequencies and pulling -- 6.6. Inhomogeneous broadening and multimode behavior -- 6.7. Spatial hole burning
Note continued: 6.8. Some consequences of the photon model for laser radiation -- 6.9. The photon statistics of laser radiation -- 6.10. The ultimate linewidth of a laser -- 6.11. Further reading -- 6.12. Problems -- 7. Descriptions of specific CW laser systems -- 7.1. Introduction -- 7.2. The He-Ne laser -- 7.3. The argon-ion laser -- 7.4. The continuous-wave organic dye laser -- 7.5. The titanium -- sapphire laser -- 7.6. The CW neodymium -- yttrium-aluminum -- garnet (Nd:YAG) laser -- 7.7. The YAG non-planar ring oscillator: a novel ring laser geometry -- 7.8. Diode-pumped solid-state (DPSS) YAG lasers -- 7.9. Further reading -- 8. Laser gain in a semiconductor -- 8.1. Introduction -- 8.2. Solid-state physics background -- 8.3. Optical gain in a semiconductor -- 8.4. Further reading -- 8.5. Problems -- 9. Semiconductor diode lasers -- 9.1. Introduction -- 9.2. The homojunction semiconductor laser -- 9.3. The double heterostructure laser -- 9.4. Quantum-well lasers
Note continued: 9.5. Distributed feedback lasers -- 9.6. The rate equations and relaxation oscillations -- 9.7. Diode laser frequency control and linewidth -- 9.8. External cavity diode lasers (ECDLs) -- 9.9. Semiconductor laser amplifiers and injection locking -- 9.10. Miscellaneous characteristics of semiconductor lasers -- 9.11. Further reading -- 9.12. Problems -- 10. Guided-wave devices and fiber lasers -- 10.1. Introduction -- 10.2. Slab waveguide: preliminary analysis -- 10.3. Wave propagation in a slab waveguide -- 10.4. Wave propagation in a fiber -- ray theory -- 10.5. Wave propagation in a fiber -- wave theory -- 10.6. Dispersion in fibers and waveguides -- 10.7. Coupling into optical fibers -- 10.8. Fiber-optic components -- 10.8.1. Directional coupler -- 10.8.2. The loop reflector -- 10.8.3. Fiber Bragg gratings -- 10.8.4. Optical isolators and circulators -- 10.8.5. Amplitude and phase modulation -- 10.8.6. Polarization-preserving fibers -- 10.8.7. Polarization controller
Note continued: 10.9. The physics of rare earth ions in glasses -- 10.10. Some specific fiber lasers -- 10.10.1. Fiber laser resonators -- 10.10.2. Erbium and erbium/ytterbium lasers -- 10.10.3. Neodymium lasers -- 10.10.4. Ytterbium lasers -- 10.10.5. Thulium lasers -- 10.11. Further reading -- 10.12. Problems -- 11. Mode-locked lasers and frequency metrology -- 11.1. Introduction -- 11.2. Theory of mode locking -- 11.3. Mode-locking techniques -- 11.4. Dispersion and its compensation -- 11.5. The mode-locked Ti-sapphire laser -- 11.6. Mode-locked fiber lasers -- 11.7. Frequency metrology using a femtosecond laser -- 11.8. The carrier envelope offset -- 11.9.Comb generation in a microresonator -- 11.10. Further reading -- 11.11. Problems -- 12. Laser frequency stabilization and control systems -- 12.1. Introduction -- 12.2. Laser frequency stabilization -- a first look -- 12.3. The effect of the loop filter -- 12.4. Elementary noise considerations -- 12.5. Some linear system theory
Note continued: 12.6. The stability of a linear system -- 12.7. Negative feedback -- 12.8. Some actual control systems -- 12.9. Temperature stabilization -- 12.10. Laser frequency stabilization -- 12.11. Optical-fiber phase noise and its cancellation -- 12.12. Characterization of laser frequency stability -- 12.13. Frequency locking to a noisy resonance -- 12.14. Further reading -- 12.15. Problems -- 13. Atomic and molecular discriminants -- 13.1. Introduction -- 13.2. Sub-Doppler saturation spectroscopy -- 13.3. Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy -- 13.4. An example of a side-of-line atomic discriminant -- 13.5. Further reading -- 13.6. Problems -- 14. Nonlinear optics -- 14.1. Introduction -- 14.2. Anisotropic crystals -- 14.3. Second-harmonic generation -- 14.4. Birefringent phase matching -- 14.5. Quasi-phase matching -- 14.6. Second-harmonic generation using a focused beam -- 14.7. Second-harmonic generation in a cavity
Note continued: 14.8. Sum-frequency generation -- 14.9. Periodically poled optical waveguides -- 14.10. Parametric interactions -- 14.11. Further reading -- 14.12. Problems -- 15. Frequency and amplitude modulation -- 15.1. Introduction -- 15.2. The linear electro-optic effect -- 15.3. Bulk electro-optic modulators -- 15.4. Traveling-wave electro-optic modulators -- 15.5. Acousto-optic modulators -- 15.6. Further reading -- 15.7. Problems
Summary Nagourney provides a course in quantum electronics for researchers in atomic physics and other related areas (including telecommunications). The book covers the usual topics, such as Gaussian beams, optical cavities, lasers, non-linear optics, modulation techniques and fibre optics, but also includes a number of areas not usually found in a textbook on quantum electronics, such as the enhancement of non-linear processes in a build-up cavity or periodically poled waveguide, impedance matching into a cavity and astigmatism in ring cavities
Notes Previous edition: 2010
Bibliography Includes bibliographical references and index
Notes Online resource; title from home page (viewed on May 20, 2014)
Subject Quantum electronics.
Laser beams.
SCIENCE -- Physics -- Electricity.
SCIENCE -- Physics -- Electromagnetism.
Laser beams
Quantum electronics
Form Electronic book
ISBN 9780191779442
019177944X
9780191643378
0191643378