Limit search to available items
Book Cover
E-book
Author Wang, G.-C. (Gwo-Ching), 1946- author.

Title Rheed transmission mode and pole figures : thin film and nanostructure texture analysis / Gwo-Ching Wang, Toh-Ming Lu
Published New York : Springer, [2013]
©2014

Copies

Description 1 online resource (231 pages)
Contents 880-01 Preface; Contents; Chapter 1 Introduction; 1.1 A Brief History of Electron Diffraction; 1.2 RHEED Transmission Mode and Pole Figure; 1.3 Electron Inelastic Mean Free Path; References; Chapter 2 Crystal Lattices and Reciprocal Lattices; 2.1 Crystal Lattices in Real Space; 2.1.1 Basic Vectors and the Translational Vector; 2.1.2 Bravais Lattices; 2.1.3 Non-Bravais Lattices; 2.1.4 Primitive and Nonprimitive Cells; 2.1.5 Plane and Direction in a Real Space Lattice; 2.1.6 Alternative Way to Define Plane Direction; 2.1.7 Plane Orientation and Interplanar Spacing Using Miller Indices
880-01/(S Machine generated contents note: 1. Introduction -- 1.1. Brief History of Electron Diffraction -- 1.2. RHEED Transmission Mode and Pole Figure -- 1.3. Electron Inelastic Mean Free Path -- References -- 2. Crystal Lattices and Reciprocal Lattices -- 2.1. Crystal Lattices in Real Space -- 2.1.1. Basic Vectors and the Translational Vector -- 2.1.2. Bravais Lattices -- 2.1.3. Non-Bravais Lattices -- 2.1.4. Primitive and Nonprimitive Cells -- 2.1.5. Plane and Direction in a Real Space Lattice -- 2.1.6. Alternative Way to Define Plane Direction -- 2.1.7. Plane Orientation and Interplanar Spacing Using Miller Indices -- 2.1.8. Interplanar Spacing Between the Same Miller Index Planes and the Angle Between Different Miller Index Planes -- 2.2. Reciprocal Lattices -- 2.2.1. Why Reciprocal Space-- 2.2.2. Bragg Condition -- 2.2.3. Reciprocal Space Basic Vectors and their Relationship to Real Space Basic Vectors -- 2.2.4. Reciprocal Lattice Vector and its Relationship to Interplanar Spacing -- 2.2.5. Reciprocal Lattice Vector and Interplanar Spacing Applied to a Hexagonal Lattice -- References -- 3. Kinematic Scattering of Waves and Diffraction Conditions -- 3.1. Kinematic Formulism of Diffraction -- 3.2. Kinematic Scattering from Electrons in an Atom -- 3.2.1. One Electron -- 3.2.2. Two Electrons -- 3.2.3. N Number of Electrons -- 3.2.4. Electron Density -- 3.3. Kinematic Scattering from a Lattice with a Primitive Unit Cell -- 3.4. Laue Conditions -- 3.5. Kinematic Scattering from a Nonprimitive Unit Cell -- 3.5.1. Structure Factor of a Simple Cubic Structure -- 3.5.2. Structure Factor of a CsCl Structure -- 3.5.3. Structure Factor of a BCC Structure -- 3.5.4. Structure Factor of an FCC Structure -- 3.5.5. Structure Factor of a NaCl Structure -- 3.5.6. Structure Factor of Hexagonal Close-Packing and Indexing the Hexagonal Close-Packing Structure -- 3.6. Reciprocal Relationship Between the FCC and the BCC -- 3.7. Ewald Sphere Construction -- References -- 4. RHEED Reflection Mode -- 4.1. RHEED Reflection Mode -- 4.2. RHEED Determination of Surface Structure -- 4.3. RHEED Monitoring of Layer-by-Layer Growth of Epitaxial Films -- 4.3.1. Peak Intensity -- 4.3.2. Coverage and Phase-Dependent Angular-Intensity Profiles -- 4.3.3. 2D Random-Filling Model -- 4.3.4. 2D Random-Clustering Model -- 4.3.5. Intensity Oscillation for 2D Random-Clustering Model -- 4.3.6. Wavelength Selection in the Island-Nucleation Model -- 4.4. Intensity Decay in the Transition from Two-Level to Multiple-Level -- References -- 5. X-ray Diffraction -- 5.1. X-ray Generation -- 5.2. X-ray Characteristic Lines -- 5.3. Texture Classification -- 5.4. Poles and Pole Figures -- 5.5. Standard Projection of a Cubic Crystal -- 5.6. X-ray Experimental Parameters -- 5.7. Pole Figures and Various Out-of-Plane Orientations -- 5.8. X-ray Instrumentation -- 5.8.1. X-ray Point Detector -- 5.8.2. X-ray Area Detector -- 5.9. Diffraction Conic Line on an Area Detector -- 5.10. Operation of a Finite-Size Area Detector -- 5.10.1. Frame Integration of 2-D Data -- 5.10.2. Pole Figure and 2θ Integration -- References -- 6. RHEED Transmission Mode and RHEED Pole Figure -- 6.1. X-Ray Diffraction vs RHEED -- 6.2. RHEED Transmission Mode -- 6.3. Calibration of Reciprocal-Space Distance Using the Transmission Mode of RHEED from a Single-Crystal Surface -- 6.4. RHEED Transmission Patterns from Textured Films -- 6.4.1. RHEED Transmission Patterns from Textured Films -- 6.4.2. Diffraction Space Characteristics of Textured Films -- 6.4.3. Basic Formulism of RHEED From Textured Films -- 6.5. Selective Examples of Texture Films Using RHEED -- 6.5.1. Cu Film on Native Oxide Covered Si Surface -- 6.5.2. MgO Film on Amorphous Substrate Si3N4 on Si(001) -- 6.5.3. Ru Nanorods on an Amorphous Substrate -- 6.6. Texture Information from Azimuthal Dependent RHEED Patterns---RHEED Pole Figure -- 6.6.1. Fiber Texture of Vertical Ru Nanorods -- 6.6.2. Biaxial Texture of Mg Nanoblades -- 6.7. Orientation Distribution Function -- 6.7.1. Euler Angles and ODF -- 6.7.2. Pole Figure as a 2D Projection of the ODF -- 6.7.3. Examples of ODF and Graphic Representation -- References -- 7. Instrumentation for RHEED Pole Figure -- 7.1. RHEED Wavevector Range -- 7.2. RHEED Setup -- 7.2.1. Electron Gun -- 7.2.2. Sample Preparation and Sample Surface -- 7.2.3. Sample Size -- 7.2.4. Sample Rotation -- 7.2.5. Low Wobbling Sample Manipulator -- 7.2.6. Ultrahigh-Vacuum Step Motor and Controller -- 7.2.7. Electron Detectors -- 7.2.8. Data Acquisition -- 7.2.9. Display, Image Analysis, and Pole Figure Analysis Software -- 7.3. Basics of the Instrument Response Function -- 7.4. RHEED Reflection Mode Instrument Response Function -- 7.4.1. Energy Spread -- 7.4.2. Electron Source Extension -- 7.4.3. Electron Beam Diameter -- 7.4.4. Improved Instrument Response Function in SPA-RHEED -- 7.5. RHEED Transmission Mode Instrument Response Function -- 7.6. Instrument Response for RHEED Pole Figure -- 7.6.1. Step Size ΔXs Dependent Instrument Response Function -- 7.6.2. X-Dependent Instrument Response Function -- 7.7. Characterization of the Instrument Response of a RHEED Pole Figure -- 7.8. Quantitative Dispersion of Textured CdTe Film Grown on Ge(111) -- References -- 8. Origins of Texture Formation -- 8.1. Epitaxial Films -- 8.2. Structure Zone Model -- 8.3. Random Polycrystalline Films -- 8.4. Fiber-Textured Films -- 8.5. Biaxially Textured Films -- 8.6. Crystal Orientation vs. Physical Rod Direction -- 8.7. Additional Remarks on Textured Films -- References -- 9. Techniques to Control Thin-Film Textures -- 9.1. Stationary Oblique Angle Deposition -- 9.2. Oblique Angle Deposition with Substrate Rotation -- 9.3. Oblique Angle Deposition with Multistep Substrate In-Plane Rotation -- 9.4. Oblique Angle Flipping Rotation -- 9.5. Epitaxial Growth with Dynamic Oblique Angle Deposition -- References -- 10. Applications and Future Directions -- 10.1. In situ Mg Growth and RHEED Pole Figure Characterization -- 10.2. Texture Evolution of W Biaxial Nanorods -- 10.3. Initial Stages of CaF2 Growth Using Oblique Angle Deposition -- 10.4. Summary and Future Directions -- 10.4.1. Research -- 10.4.2. Instrumentation -- References -- Appendices -- Appendix A Operational Procedures for RHEED Pole figure -- A.1. Flow Chart for RHEED Pole Figure Data Collection -- A.2. Step-By-Step Procedures for RHEED Pole Figure Data Collection -- A.3. Glossary for RHEED Pole Figure Source Codes Version 1.8.3 -- A.4. Source Codes for RHEED Pole Figure Version 1.8.3 -- Appendix B For RHEED Pattern Simulations -- B.1. Flow Chart for RHEED Pattern Simulations -- B.2. Glossary for RHEED Pattern Simulation Source Codes
2.1.8 Interplanar Spacing Between the Same Miller Index Planes and the Angle Between Different Miller Index Planes; 2.1.8.1 Cubic Lattices; 2.1.8.2 Hexagonal Close Packed Lattice; 2.2 Reciprocal Lattices; 2.2.1 Why Reciprocal Space?; 2.2.2 Bragg Condition; 2.2.3 Reciprocal Space Basic Vectors and their Relationship to Real Space Basic Vectors; 2.2.4 Reciprocal Lattice Vector and its Relationship to Interplanar Spacing; 2.2.5 Reciprocal Lattice Vector and Interplanar Spacing Applied to a Hexagonal Lattice; References; Chapter 3 Kinematic Scattering of Waves and Diffraction Conditions
3.1 Kinematic Formulism of Diffraction; 3.2 Kinematic Scattering from Electrons in an Atom; 3.2.1 One Electron; 3.2.2 Two Electrons; 3.2.3 N Number of Electrons; 3.2.4 Electron Density; 3.3 Kinematic Scattering from a Lattice with a Primitive Unit Cell; 3.4 Laue Conditions; 3.5 Kinematic Scattering from a Nonprimitive Unit Cell; 3.5.1 Structure Factor of a Simple Cubic Structure; 3.5.2 Structure Factor of a CsCl Structure; 3.5.3 Structure Factor of a BCC Structure; 3.5.4 Structure Factor of an FCC Structure; 3.5.5 Structure Factor of a NaCl Structure
3.5.6 Structure Factor of Hexagonal Close-Packing and Indexing the Hexagonal Close-Packing Structure; 3.6 Reciprocal Relationship Between the FCC and the BCC; 3.7 Ewald Sphere Construction; References; Chapter 4 RHEED Reflection Mode; 4.1 RHEED Reflection Mode; 4.2 RHEED Determination of Surface Structure; 4.3 RHEED Monitoring of Layer-by-Layer Growth of Epitaxial Films; 4.3.1 Peak Intensity; 4.3.2 Coverage and Phase-Dependent Angular-Intensity Profiles; 4.3.3 2D Random-Filling Model; 4.3.4 2D Random-Clustering Model; 4.3.5 Intensity Oscillation for 2D Random-Clustering Model
4.3.6 Wavelength Selection in the Island-Nucleation Model; 4.4 Intensity Decay in the Transition from Two-Level to Multiple-Level; References; Chapter 5 X-ray Diffraction; 5.1 X-ray Generation; 5.2 X-ray Characteristic Lines; 5.3 Texture Classification; 5.4 Poles and Pole Figures; 5.5 Standard Projection of a Cubic Crystal; 5.6 X-ray Experimental Parameters; 5.7 Pole Figures and Various Out-of-Plane Orientations; 5.8 X-ray Instrumentation; 5.8.1 X-ray Point Detector; 5.8.2 X-ray Area Detector; 5.9 Diffraction Conic Line on an Area Detector; 5.10 Operation of a Finite-Size Area Detector
Summary This unique book covers the fundamental principle of electron diffraction, basic instrumentation of RHEED, definitions of textures in thin films and nanostructures, mechanisms and control of texture formation, and examples of RHEED transmission mode measurements of texture and texture evolution of thin films and nanostructures. Also presented is a new application of RHEED in the transmission mode called RHEED pole figure technique that can be used to monitor the texture evolution in thin film growth and nanostructures and is not limited to single crystal epitaxial film growth. Details of the c
Bibliography Includes bibliographical references
Notes Online resource; title from PDF title page (ebrary, viewed January 13, 2014)
Subject Crystal growth.
Molecular beams.
SCIENCE -- Physics -- Crystallography.
Ingénierie.
Crystal growth
Molecular beams
Form Electronic book
Author Lu, T.-M. (Toh-Ming), 1943- author.
ISBN 9781461492870
1461492874
1461492866
9781461492863