Limit search to available items
Book Cover
E-book
Author Koyanagi, Jun

Title Durability of Carbon Fiber Reinforced Plastics
Published Milton : Taylor & Francis Group, 2024

Copies

Description 1 online resource (123 p.)
Contents Cover -- Half Title -- Title -- Copyright -- Contents -- 1 Introduction -- 1.1 Significance of Micromechanics -- 1.2 Overview of This Book -- References -- 2 Mechanical Properties of Interface Between Fiber and Matrix -- 2.1 Introduction -- 2.2 How to Evaluate Interface Strength -- 2.2.1 Microbond Test -- 2.2.2 Single-Fiber Pull-Out Test Using Pin-Holed Plate -- 2.2.3 Cruciform Specimen Test -- 2.2.4 Interface Failure Envelope -- 2.3 Time and Temperature Dependence of Interface Strength -- 2.3.1 Time and Temperature Dependence of Interface "Normal" Strength
2.3.2 Time and Temperature Dependence of Interface "Shear" Strength -- 2.4 Approach Using Molecular Dynamics Simulation -- References -- 3 Constitutive Relationship of Resin Matrix Including Viscoelasticity and Damage -- 3.1 Nonlinear Viscoelastic Constitutive Equation Considering Irrecoverable Strain for Vinyl Ester Resin -- 3.1.1 Introduction -- 3.1.2 Theoretical Background -- 3.2 Creep-Recovery Tests -- 3.3 Entropy-Based Failure Criterion for Polymer Materials -- 3.4 Validity of Entropy Failure Criterion for Resin Failure -- 3.4.1 Experimental Work -- 3.4.2 Numerical Work
3.5 Strength of Resin Predicted by MD Simulation -- References -- 4 Composite Strength Estimation and Prediction Based on Micromechanics -- 4.1 Fiber-Axial Tensile Strength -- 4.1.1 A Conventional Model -- 4.1.2 SFF Model -- 4.1.3 Discussion -- 4.2 Micromechanical Numerical Simulations for Fiber-Axial Shear Analysis -- 4.3 Fiber-Axial Compressive Strength -- 4.4 Discussion -- References -- 5 Durability Predicted by Microscale Simulations -- 5.1 Time and Temperature Dependence of Transverse Tensile Failure of Unidirectional Carbon-Fiber-Reinforced Polymer Matrix Composites
5.1.1 Experimental Works -- 5.1.2 Simple FEA and Critical Point Stress -- 5.1.3 Time and Temperature Dependence on Interface Strength for Microscale Numerical Simulation -- 5.1.4 RVE Model -- 5.1.5 Periodic Boundary Conditions -- 5.1.6 Models for Matrix and Interface -- 5.1.7 Results and Discussions -- 5.2 Residual Strength of UD Composite Predicted by Entropy-Based Failure Criterion -- 5.3 Long-Term Durability for Fiber-Directional Strength of UD CFRP Based on SFF Model -- 5.3.1 Matrix Strength -- 5.3.2 Time and Temperature Dependence of UD CFRP Strengths Based on SFF Model -- References
6 Durability Predicted by Mesoscale Simulations -- 6.1 Development of Finite Element Model for Simulating Entropy-Based Strength-Degradation for CFRP Subjected to Various Loadings -- 6.2 Numerical Procedures -- 6.2.1 Orthotropic Viscoelastic Relaxation Modulus -- 6.2.2 Implementation of Orthotropic Viscoelastic Constitutive Relation and Entropy Calculation in FEM -- 6.3 Experimental -- 6.3.1 Experimental Conditions -- 6.3.2 Experimental Results -- 6.4 Comparison With Numerical Results -- 6.5 Summary -- References -- 7 Future Prospectives -- At the End -- Index
Summary Koyanagi presents a concise and practical guide to using a micromechanics approach to predict the strength and durability of unidirectionally aligned continuum carbon fiber reinforced plastics (CFRPs)
Notes Description based upon print version of record
Genre/Form Electronic books
Form Electronic book
ISBN 9781003851622
1003851622