Limit search to available items
Book Cover
E-book
Author Kempe, Volker.

Title Inertial MEMS : principles and practice / Volker Kempe
Published Cambridge ; New York : Cambridge University Press, 2011
Online access available from:
Cambridge Core    View Resource Record  

Copies

Description 1 online resource (xiv, 475 pages) : illustrations
Contents 880-01 1. Introduction; 2. Transducers; 3. Non-inertial forces; 4. MEMS -- technologies; 5. First level packaging; 6. Electrical interfaces; 7. Accelerometers; 8. Gyroscopes; 9. Test and calibration; 10. Concluding remarks
880-01/(S Machine generated contents note: 1. Introduction -- 1.1. short foray through the pre-MEMS history -- 1.2. Applications and market -- 1.3. ingredients of inertial MEMS -- References -- 2. Transducers -- 2.1. Anisotropic material properties, tensors, and rotations -- 2.1.1. Stress, strain, and piezoresistivity -- Hooke's law -- Normal stresses -- Shear stresses -- Stress and strain tensors -- stress-strain relation for anisotropic materials -- piezoresistance of silicon -- 2.1.2. Rotation of coordinate systems -- Coordinate frames -- rotation tensor -- Transformation of tensors of second order -- 2.2. Piezoresistive transducers -- 2.2.1. Piezoresistors -- 2.2.2. Piezoresistors on silicon -- Thin piezoresistors -- Temperature compensation in piezoresistors -- 2.2.3. Piezoresistors on polysilicon -- 2.3. Piezoelectric transducers -- 2.3.1. piezoelectric effect -- 2.3.2. Piezoelectric equations -- Piezoelectric sensors in MEMS -- 2.4. Capacitive transducers -- 2.4.1. Electrostatic forces -- 2.4.2. Parallel-plate capacitors -- Capacitance sensing -- pull-in effect -- 2.4.3. Tilting-plate capacitors -- Nonlinear distortions -- Instabilities of a singular tilting plate -- Instabilities of the tilting capacitance pair -- 2.4.4. Comb capacitors -- Unidirectional linear combs -- Bidirectional actuation -- Radial combs -- Frame-based capacitors -- 2.4.5. Levitation -- Comb levitation -- Levitation in drive combs -- Reduction of levitation forces -- References -- 3. Non-inertial forces -- 3.1. Springs -- 3.1.1. Beams -- 3.1.2. stiffness matrix -- 3.1.3. bending equation for beams -- Internal forces and moments -- Differential relations of a bent beams -- 3.1.4. Cantilever beams -- Cantilevers under different loads -- Skew beam bending and asymmetric suspensions -- Residual stress in bending beams -- 3.1.5. Torsion springs -- Cylindrical torsion bars -- Torsion bars with arbitrary cross-section -- Rectangular bars -- Cylindrical bars -- 3.1.6. Stress concentration -- 3.1.7. Suspensions -- Parallel and serial spring connections -- Beam chains -- Plate suspension -- 3.2. Damping forces -- 3.2.1. Fluid-flow models -- Continuous viscous flow -- Viscosity of gases -- Continuous-flow equations -- 3.2.2. Slide damping -- Couette flow for slowly moving plates -- Stokes flow for rapidly oscillating plates -- 3.2.3. Squeeze damping -- Reynolds' equation -- Low-frequency squeeze damping -- High-frequency squeeze damping -- impact of perforation -- 3.2.4. Drag forces -- 3.2.5. Free molecular flow -- 3.2.6. Structural damping -- References -- 4. MEMS technologies -- 4.1. Microfabrication of inertial MEMS -- 4.1.1. Basic microelectronic fabrication steps -- Deposition -- Patterning -- Doping -- 4.1.2. Etching -- Isotropic wet etching -- Anisotropic wet etching -- Electrochemical etch stop -- 4.1.3. Dry etching -- Reactive-ion etching -- Deep reactive-ion etching -- 4.2. Wafer bonding -- 4.2.1. Zero-level packaging and wafer bonding -- 4.2.2. Wafer-bonding processes -- Fusion bonding -- Anodic bonding -- Glass-frit bonding -- Metallic-alloy seal bonding -- Polymer bonding -- Thermocompression bonding -- 4.3. Integrated processes -- 4.3.1. Bulk micromachining -- 4.3.2. Surface micromachining -- thick polysilicon process -- Cavity sealing using SMM -- 4.3.3. SOI-MEMS processes -- MEMS prototyping processes -- 4.3.4. CMOS-MEMS -- Pre-CMOS MEMS -- Intra-CMOS MEMS -- Post-CMOS MEMS -- References -- 5. First-level packaging -- 5.1. FLP packages -- 5.2. FLP technologies -- 5.2.1. Dicing and die separation -- 5.2.2. Die attachment -- Packaging materials -- Die-attachment-induced stress -- 5.2.3. Electrical interconnection -- 5.2.4. Encapsulation -- Overmolded plastic packages -- Pre-molded plastic packages -- References -- 6. Electrical interfaces -- 6.1. Sensing electronics -- building blocks -- 6.1.1. MOS transistor -- Drain current -- small-signal model -- 6.1.2. Operational and transconductance amplifiers -- simple transconductance amplifier -- Models of operational and transconductance amplifiers -- real Op Amp -- Instrumentation amplifiers -- 6.2. Sensor interfaces -- 6.2.1. Resistive interfaces -- 6.2.2. Piezoelectric interfaces -- 6.2.3. Capacitive interfaces -- Principles of capacitive sensing -- Current sensing -- Voltage sensing -- Charge sensing -- Comparison and improvements -- Switched-capacitor sensing -- 6.3. Data converters -- 6.3.1. Sampling and hold -- 6.3.2. Single-sample conversion in the amplitude domain -- 6.3.3. Time-domain conversion -- Pulse-width and pulse-density modulation -- ΣΔ Converters -- References -- 7. Accelerometers -- 7.1. General measurement objectives -- 7.2. spring-mass system -- 7.2.1. transfer functions -- trade-off between sensitivity and bandwidth -- 7.2.2. Accelerometer imperfections -- simplified accelerometer model with imperfections -- Cross-coupling -- 7.2.3. Accelerometer feedback control -- linearized feedback model -- signal-to-noise ratio -- Closed-loop dynamics -- 7.2.4. Feedback control with nonlinear actuators -- Bidirectional capacitive actuators -- Single-sided actuators -- Linearization and embedded ΣΔ converters -- 7.3. Resonant accelerometers -- 7.3.1. Resonant beams -- Resonance vibration -- exact solution -- Resonance frequencies by the energy method -- 7.3.2. Resonant accelerometer systems -- 7.4. Beam accelerometers -- 7.4.1. Beam dynamics -- principle of virtual work -- Eigenmode expansion -- Damping and electrostatic forces -- Static deflection -- 7.4.2. Model implementation -- impact of nonlinear damping -- Feedback control -- 7.5. Various other accelerometer principles -- 7.5.1. Tunneling accelerometers -- 7.5.2. Convective and bubble accelerometers -- 7.6. From 1D to 6D accelerometers -- 7.6.1. 1D accelerometers -- Piezoresistive accelerometers -- Capacitive accelerometers -- Piezoelectric accelerometers -- 7.6.2. 2D and 3D accelerometers -- Parallel implementation -- 2D and 3D accelerometers with multi-DOF sensing elements -- 7.6.3. 6D accelerometers -- References -- 8. Gyroscopes -- 8.1. Some basic principles -- 8.2. Kinematics of gyroscopes -- 8.2.1. Platform rotation and angular velocity -- 8.2.2. Body rotation in a non-inertial system -- 8.2.3. angular-momentum theorem -- 8.2.4. momentum equation -- 8.2.5. small-angle approximation -- 8.3. performance of gyroscopes -- 8.4. Rate-integrating gyroscopes -- 8.4.1. Two-DOF gyroscopes -- 8.4.2. principle of angular gyroscopes -- 8.4.3. imperfection model -- 8.4.4. Imperfection in angular gyroscopes -- 8.4.5. Gyroscope control -- 8.5. Rate gyroscopes -- 8.5.1. System architecture -- drive resonator -- Sensing -- 8.5.2. Resonance sensing -- 8.5.3. Non-resonant sensing -- 8.5.4. Noise -- 8.5.5. zero-rate output -- Mechanical bias sources -- Q-bias -- impact of transducer imperfections -- R-bias -- Other bias sources -- 8.5.6. Bias stability -- 8.5.7. Acceleration suppression and tuning forks -- Anti-phase-driven identical gyroscopes -- Tuning-fork gyroscopes -- 8.5.8. Drive-motion control and spring nonlinearities -- phase-locked loop -- amplitude loop -- Spring nonlinearities and the resonator transfer function -- 8.6. Gyroscope architectures -- 8.6.1. Mode-decoupling architectures -- 8.6.2. z-Gyroscopes -- Mode decoupling by frame-based architectures -- Doubly decoupled z-gyroscopes -- 8.6.3. In-plane-sensitive gyroscopes -- In-plane-sensitive linear gyroscopes -- Linear-rotatory gyroscopes -- 8.6.4. Torsional gyroscopes -- 1D torsional gyroscopes -- Decoupled torsional gyroscopes -- 8.7. Non-planar MEMS gyroscopes -- 8.7.1. Beam gyroscopes -- 8.7.2. Quartz tuning forks -- 8.7.3. Ring gyroscopes -- 8.7.4. Bulk acoustic-wave gyroscopes -- 8.8. 2D and 3D gyroscopes and ways towards a 6D IMU -- 8.8.1. Single-mass multiple-DOF inertial sensors -- Gyroscope-free, single-mass IMUs -- Single-mass, gyroscope-based IMUs -- 5D inertial sensors -- 8.8.2. 2D gyroscopes -- 8.8.3. 3D gyroscopes -- fully decoupled 3D gyroscope and extension towards an IMU -- References -- 9. Test and calibration -- References
Summary "Inertial sensors exploit inertial forces acting on an object to determine its dynamic behavior. The basic dynamic parameters are acceleration along some axis and the angular rate. External forces acting on a body cause an acceleration and/or a change of its orientation (angular position). The rate of change of the angular position is the angular velocity (angular rate). A speedometer is not an inertial sensor because it is able to measure a constant velocity of a body that is not exposed to inertial forces. An inertial sensor is unable to do so; however, if the initial conditions of the body are known, their evolution can be calculated by integrating the dynamic equation on the basis of the measured acceleration and rate signals. In the overwhelming majority of practical applications, such as vibrational measurements, active suspension systems, crash-detection systems, alert systems, medical activity monitoring, safety systems in cars, and computer-game interfaces, the short-term dynamic changes of the object are of interest. But there are also many applications where inertial sensors are used for determination of the positions and orientations of a body, as in robotics, general machine control, and navigation. Owing to the necessity of integrating the corresponding dynamic equations, the accuracy requirements in these applications are usually higher because the measurement errors and instabilities of the sensors are accumulated over the integration time. Often inertial sensors are used in conjunction with other measurement systems, as in the case of robotics, where they are used together with position and force/torque sensors, or in the case of the integration of Inertial Navigation Systems (INS) with Global Positioning Systems (GPS) in cars"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Microelectromechanical systems.
Inertial navigation systems.
BioMEMS.
TRANSPORTATION -- Navigation.
BioMEMS
Inertial navigation systems
Microelectromechanical systems
Form Electronic book
ISBN 9780511933387
051193338X
9780511923913
0511923910
9780511933899
0511933894
9780511928178
0511928173
1107217563
9781107217560
1283006146
9781283006149
9786613006141
6613006149
0511932022
9780511932021
0511925646
9780511925641
0511930682
9780511930683