Limit search to available items
Book Cover
E-book
Author Pesonen, Lauri J

Title Ancient Supercontinents and the Paleogeography of Earth
Published San Diego : Elsevier, 2021

Copies

Description 1 online resource (664 p.)
Contents Front Cover -- Ancient Supercontinents and the Paleogeography of Earth -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Precambrian supercontinents and supercycles-an overview -- 1.1 The history of the supercontinent research-the five milestones -- 1.2 The Earth and the solar system -- 1.3 Some tectonic concepts -- 1.4 Precambrian supercontinents and their cyclicity-observational evidence -- 1.5 How to reconstruct Precambrian terranes? -- 1.6 Models of the Precambrian supercontinents-some remarks -- 1.7 Precambrian paleomagnetism and paleogeography: a guideline -- 1.7.1 Target rocks -- 1.7.2 Steps 1 and 2 -- 1.7.3 Steps 3−6 -- 1.7.4 Step 7 -- 1.7.5 Step 8 -- 1.8 Precambrian paleomagnetism applied to paleoreconstructions-an example -- 1.8.1 Example 1: closest approach technique for reconstructions -- 1.8.2 Matching apparent polar wander paths-another technique for reconstructions -- 1.9 Precambrian paleomagnetic databases -- 1.9.1 Precambrian pole distributions -- 1.9.2 Some aspects of Precambrian paleomagnetic data -- 1.10 Global and terrane geological maps for reconstructions -- 1.11 Precambrian supercontinent cycle -- 1.11.1 The Precambrian supercontinents and supercycles -- 1.11.2 Secular evolution trends during the Precambrian -- 1.11.2.1 Proxies of core and mantle -- 1.11.2.2 Proxies of crustal extraction -- 1.11.2.3 Proxies reflecting plate tectonics -- 1.11.2.4 Paleolatitude proxies -- 1.11.2.5 Paleoclimate and other proxies -- 1.11.2.6 Kinematic proxies -- 1.11.3 Are the supercontinents the same, similar, or different? -- 1.11.4 Precambrian events and supercontinent cycle -- 1.12 Conclusions and suggestions for future work -- 1.13 How we proceed in this book -- Acknowledgments -- Appendices -- References
2 A mantle dynamics perspective on the drift of cratons and supercontinent formation in Earth's history -- 2.1 Introduction -- 2.2 Methodology -- 2.2.1 Geodynamic modeling -- 2.2.2 Specific model setup -- 2.2.2.1 Continent configuration -- 2.2.3 Continental drift diagnostics -- 2.2.4 Computed evolutions -- 2.3 Results -- 2.3.1 Average mantle structure -- 2.3.2 Temporal changes in surface plate motions and continental drift -- 2.3.3 Geodynamic surface evolutions -- 2.3.3.1 Homogeneous continent-size distribution (case A) -- 2.3.3.2 Heterogeneous continent-size distribution (case B) -- 2.3.3.3 More vigorous mantle flow (case C) -- 2.4 Long-term cooling of the mantle (case D) -- 2.5 Discussion -- 2.5.1 Supercontinent formation scenarios and grouping of continental units -- 2.5.2 Inclination frequency sampling and inferences on the GAD hypothesis -- 2.5.3 Challenges in the comparison to paleomagnetic data -- 2.5.4 Model limitations and future directions -- 2.6 Conclusion -- Acknowledgments -- References -- 3 Precambrian geomagnetic field-an overview -- 3.1 Introduction -- 3.2 Precambrian geomagnetic field-characteristic features -- 3.3 Inclination frequency analysis -- 3.4 Field reversals -- 3.5 Paleosecular variation -- 3.6 Paleointensity -- 3.7 Continental drift -- 3.8 Results -- 3.9 Conclusion -- Acknowledgments -- References -- 4 The Precambrian paleogeography of Laurentia -- 4.1 Introduction and broad tectonic history -- 4.1.1 Laurentia's initial formation -- 4.1.2 Protracted Proterozoic accretionary growth followed by collisional orogenesis -- 4.1.3 Neoproterozoic rifting -- 4.1.4 Similarities in Laurentia's Proterozoic and Phanerozoic tectonic histories -- 4.2 Paleomagnetic pole compilation -- 4.3 Differential motion before Laurentia amalgamation -- 4.4 Paleogeography of an assembled Laurentia
4.5 Comparing paleogeographic models to the paleomagnetic compilation -- 4.6 Paleoenvironmental constraints on paleolatitude -- 4.7 Evaluating Laurentia's Proterozoic paleogeographic neighbors -- 4.7.1 Paleogeographic connections prior to initial Laurentia assembly -- 4.7.2 Amazonia -- 4.7.3 Australia and East Antarctica -- 4.7.4 Baltica -- 4.7.5 Kalahari -- 4.7.6 North China -- 4.7.7 Siberia -- 4.8 The record implies plate tectonics throughout the Proterozoic -- 4.9 Conclusion -- Acknowledgments -- Notes -- Glossary -- References -- 5 The Precambrian drift history and paleogeography of Baltica -- 5.1 Introduction -- 5.2 Geological evolution of Baltica -- 5.2.1 General geological outline for Baltica -- 5.2.2 Geological evolution of Fennoscandia and formation of Baltica -- 5.2.2.1 Geological evolution of the Archean Karelian and Kola cratons of Fennoscandia -- 5.2.2.2 Crustal growth of Fennoscandia-the Svecofennian orogen -- 5.2.3 Geological evolution of Volgo-Sarmatia and formation of Baltica -- 5.2.4 Geological evolution of Baltica -- 5.2.4.1 Baltica within Nuna-different tectonic regimes -- 5.2.4.2 Igneous activity and rifting in Baltica reflecting initiation of the breakup on Nuna? -- 5.2.4.3 Late Mesoproterozoic-Neoproterozoic geological evolution of Baltica-the Rodinia cycle -- 5.3 Material and methods -- 5.3.1 Paleomagnetic poles of Baltica-latitudinal drift history and drift rate -- 5.3.2 Paleoclimatic indicators of Baltica-testing the reconstructed latitudinal drift history -- 5.4 Paleomagnetic evidence for the drift of Baltica -- 5.4.1 Review of the paleomagnetic poles of Baltica -- 5.4.1.1 Archean-Paleoproterozoic poles of subcratons of Baltica -- 5.4.1.2 Late Paleoproterozoic-Neoproterozoic poles for amalgamated Baltica -- 5.4.2 Latitudinal drift of Baltica -- 5.4.2.1 Archean-Paleoproterozoic latitudinal drift and amalgamation of Baltica
5.4.2.2 Late Paleoproterozoic-Neoproterozoic latitudinal drift of amalgamated Baltica -- 5.5 Paleoproterozoic-Neoproterozoic climatic indicators for Baltica -- 5.6 Drift velocities of Baltica and its subcratons with implication to tectonics -- 5.6.1 Archean-Paleoproterozoic drift velocities with implication to tectonics -- 5.6.2 Late Paleoproterozoic-Neoproterozoic drift velocities with implication to tectonics -- 5.7 Implications for Baltica in Superia supercraton and Nuna and Rodinia supercontinents -- 5.7.1 Karelian and Kola in Superia -- 5.7.2 Baltica in Nuna and Rodinia cycles -- 5.7.2.1 Baltica-Laurentia-Siberia -- 5.7.2.2 Baltica-Congo-São Francisco -- 5.7.2.3 Baltica-India in Nuna and Rodinia cycles -- 5.7.2.4 Baltica-Amazonia in Nuna and Rodinia cycles -- 5.8 Concluding remarks -- Acknowledgments -- Supplementary table -- References -- 6 The Precambrian drift history and paleogeography of Amazonia -- 6.1 Introduction -- 6.2 The Amazonian Craton -- 6.3 Quality criteria of paleomagnetic poles -- 6.4 Amazonian paleomagnetic data and apparent polar wander path -- 6.4.1 Amazonian latitude drift -- 6.4.2 Amazonian apparent polar wander path and the polarity time scale -- 6.4.3 Amazonia pre-Columbia -- 6.4.4 Amazonia in a long-lived Columbia? -- 6.4.5 Amazonian Craton in the Rodinia supercontinent -- 6.4.6 Amazonian Craton in Gondwana -- 6.5 Final remarks -- Acknowledgments -- References -- 7 The Precambrian drift history and paleogeography of Río de la Plata craton -- 7.1 Introduction -- 7.2 Geology of the Río de la Plata craton -- 7.2.1 Piedra Alta Terrane (PA) -- 7.2.2 Tandilia terrane (T) -- 7.2.3 Nico Perez terrane (NP) and Dom Feliciano Belt (DFB) -- 7.3 Material -- 7.4 Results -- 7.5 Discussion -- 7.5.1 RP and Precambrian continents -- 7.5.2 Paleoclimatic record of RP -- 7.6 Conclusions -- Acknowledgements -- References
8 Precambrian paleogeography of Siberia -- 8.1 Introduction -- 8.2 Geology of the Siberian Craton -- 8.3 Paleomagnetic data and paleolatitudes of Siberian Craton -- 8.4 Possible neighbors of Siberian Craton -- 8.5 Conclusion -- Acknowledgments -- References -- 9 Whence Australia: Its Precambrian drift history and paleogeography -- 9.1 Introduction to the Precambrian geology of Australia -- 9.2 Material -- 9.2.1 Paleomagnetic studies -- 9.2.1.1 Archean poles -- Archean Hamersley banded-iron formations and iron ores -- 9.2.1.2 Paleo-Mesoproterozoic -- Kimberley Craton -- Paleo-Mesoproterozoic McArthur Basin/Pine Creek Inlier -- 9.2.1.3 Mesoproterozoic -- Middleback Ranges -- Gawler Craton -- Warakurna large igneous province -- The Albany-Fraser Belt -- 9.2.1.4 Neoproterozoic -- Mundine Dyke Swarm, WA -- Central Australian successions -- Dykes of the Yilgarn Craton, WA -- South Australian successions -- 9.2.2 Data selection -- 9.3 Results: original and age-binned apparent polar wander paths -- 9.3.1 Raw apparent polar wander curve -- 9.3.2 Age-binned APW curve -- 9.4 Discussion -- 9.4.1 Implications for supercontinents -- 9.4.1.1 Australian Cratons in Kenorland (c. 2.77-2.47Ga) -- 9.4.1.2 Australian Cratons in Nuna -- 9.4.1.3 Australian Cratons in Rodinia -- 9.4.2 Neoproterozoic intracontinental rotation -- 9.4.3 Implications for assembly and potential separation events of the Australian cratons -- 9.4.4 Paleoclimate indicators -- 9.4.5 Australian paleolatitudes in a global perspective -- 9.5 Summary -- References -- 10 The Precambrian drift history and paleogeography of India -- 10.1 Introduction -- 10.2 Data selection -- 10.2.1 Southern Indian Block (Dharwar, Bastar, and Singhbhum cratons) -- 10.2.1.1 Dharwar craton results -- 10.2.1.1.1 Bastar craton -- 10.2.1.1.2 Singhbhum craton
Notes Description based upon print version of record
Bibliography Includes bibliographical references and index
Subject Continental drift.
Paleogeography.
Geology, Stratigraphic -- Precambrian.
continental drift.
paleogeography.
Continental drift
Geology, Stratigraphic
Paleogeography
Precambrian Geologic Period
Form Electronic book
Author Salminen, Johanna
Elming, Sten-Ake
Evans, David A. D
Veikkolainen, Toni
ISBN 9780128185346
0128185341