Limit search to available items
Book Cover
Author De Silva, Vin, 1971- author.

Title Combinatorial floer homology / Vin de Silva, Joel W. Robbin, Dietmar A. Salamon
Published Providence, Rhode Island : American Mathematical Society, 2014
Online access available from:
ProQuest Ebook Central Subscription    View Resource Record  


Description 1 online resource (v, 114 pages) : illustrations
Series Memoirs of the American Mathematical Society, 0065-9266 ; number 1080
Memoirs of the American Mathematical Society ; no. 1080
Contents Introduction -- Part I: The Viterbo-Maslov Index -- Part II: Combinatorial lunes -- Part III: Floer homology -- Appendix A: The space of paths -- Appendix B: Diffeomorphisms of the half disc -- Appendix C: Homological algebra -- Appendix D: Asymptotic behavior of holomorphic strips
Summary We define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented 2-manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Our proof uses a formula for the Viterbo-Maslov index for a smooth lune in a 2-manifold
Notes "Volume 230, number 1080 (second of 5 numbers), July 2014."
Bibliography Includes bibliographical references (pages 111-112) and index
Notes Print version record
Subject Floer homology.
Floer homology.
MATHEMATICS -- Geometry -- General.
Form Electronic book
Author Robbin, Joel W., author.
Salamon, D. (Dietmar), author.
American Mathematical Society, publisher.
ISBN 1470416700