Limit search to available items
Book Cover
E-book
Author Kumar, Arvind

Title 1D Semiconducting Hybrid Nanostructures : Synthesis and Applications in Gas Sensing and Optoelectronics
Published Newark : John Wiley & Sons, Incorporated, 2023
©2023

Copies

Description 1 online resource (365 pages)
Contents Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 One-Dimensional Semiconducting Hybrid Nanostructure: Gas Sensing and Optoelectronic Applications -- 1.1 Introduction -- 1.2 Synthesis of 1D Hybrid Nanostructures -- 1.2.1 Top-Down Approach -- 1.2.2 Bottom-Up Approach -- 1.2.2.1 Nanotubes -- 1.2.2.2 Nanowires -- 1.2.2.3 Nanorods -- 1.3 Applications of 1D Hybrid Nanostructures -- 1.3.1 Gas Sensing -- 1.3.1.1 Safety Monitoring of Exhaust Gases in Automobile -- 1.3.1.2 Health Monitoring -- 1.3.1.3 Environmental Monitoring -- 1.3.2 Optoelectronic Application -- 1.3.2.1 Photodetector -- 1.3.2.2 Solar Cell -- 1.3.2.3 Light-Emitting Diode -- 1.4 Conclusions -- Acknowledgment -- References -- Chapter 2 Synthesis and Gas-Sensing Application of 1D Semiconducting Hybrid Nanostructures -- 2.1 Introduction -- 2.2 Noble Metal-Functionalized 1D Metal Oxide Semiconductors for Gas Sensors -- 2.3 1D Metal Oxide/Metal Oxide Heterojunctions-Based Gas Sensors -- 2.4 Conducting Polymer/1D Metal Oxide Nanocomposites for Gas Sensors -- 2.5 Hybrid Conducting Polymer/Carbon Nanotube-Based Gas Sensors -- 2.6 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 3 Room-Temperature Gas-Sensing Properties of Metal Oxide Nanowire/Graphene Hybrid Structures -- 3.1 Introduction -- 3.2 Synthesis of Graphene and Graphene Oxide -- 3.2.1 Mechanical Exfoliation -- 3.2.2 Electrochemical Method -- 3.2.3 Sonication -- 3.2.4 Exfoliation of Graphite Oxide -- 3.2.5 Unzipping Carbon Nanotubes -- 3.2.6 Epitaxial Growth on Silicon Carbide (SiC) -- 3.2.7 Chemical Vapor Deposition -- 3.3 Graphene/Metal Oxide Nanowires Hybrid-Based Sensors -- 3.3.1 ZnO Nanowires Reduced Graphene Oxide-Based Hybrids for NH3 Detection -- 3.3.1.1 Influence of Weight Percentage on Ammonia-Sensing Characteristics
3.3.2 NO2 Detection Using Metal Oxide Nanowires Hybrids with Reduced Graphene Oxide -- 3.3.2.1 Cu2O Nanowires/RGO-Based Hybrid -- 3.3.2.2 SnO2 Nanowires/RGO-Based Hybrid -- 3.3.3 H2S Detection Using SnO2 Quantum Wire/RGO-Based Hybrid -- 3.3.4 ZnO Nanowires-Graphene-Based H2 Sensor -- 3.3.5 ZnO Nanowires on Laser-Scribed Graphene-Based Devices for NO Gas Detection -- 3.3.6 UV Light-Activated NO2- and SO2-Gas-Sensing Using RGO/Hollow SnO2 Nanofibers -- 3.4 Conclusion -- References -- Chapter 4 Highly Sensitive Room-Temperature Gas Sensors Based on Organic-Inorganic Nanofibers -- 4.1 Introduction -- 4.2 Classification of Nanofibers for Gas-Sensing Application -- 4.2.1 Organic Nanofibers -- 4.2.2 Inorganic Nanofibers -- 4.2.3 Heterostructure-Based Organic-Inorganic Nanofibers -- 4.3 Different Configurations of Gas Sensors -- 4.4 Synthesis of NFs -- 4.4.1 Electrospinning and Coaxial Electrospinning Techniques -- 4.4.2 On-Chip Fabrication and Direct Writing of NFs-Based Gas Sensors -- 4.5 Role of Physicochemical Properties of Nanofibers in Gas Sensing -- 4.5.1 Surface-Dependent Properties -- 4.5.2 Interface-Dependent Properties -- 4.5.3 Morphology-Controlled Properties -- 4.5.4 Adsorption-Desorption Kinetics -- 4.6 Enhancement of Characteristics of Nanofibers-Based Sensor Performance -- 4.6.1 UV Light/High-Energy Beam Irradiation -- 4.6.2 Noble Metal Sensitizers -- 4.7 Recent Trends -- 4.7.1 Single-Nanofiber-based Gas Sensors Synthesized by Electrospinning -- 4.7.2 E-Noses and Nano-e-Noses Using NFs -- 4.7.3 On-Chip Fabrication of Aligned NFs Heterostructures -- 4.7.4 Wearable Devices -- 4.8 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 5 1D Hybrid Tin Oxide Nanostructures: Synthesis and Applications -- 5.1 Main Features of 1D Materials -- 5.2 Synthesis of 1D SnO, Sn3O4, and SnO2 Materials -- 5.2.1 Hydrothermal Method
5.2.2 Electrospinning Method -- 5.2.3 Chemical Vapor Deposition (CVD) -- 5.2.4 Reactive Sputtering Method -- 5.3 Tin-Based Hybrid Nanostructures -- 5.3.1 SnO2-Based Hybrid Nanostructures -- 5.3.2 Sn3O4-Based Hybrid Nanostructures -- 5.3.3 SnO-Based Hybrid Nanostructures -- 5.4 Gas-Sensing Performance of 1D Tin Oxide-Based Hybrid Nanostructures -- 5.4.1 Pristine 1D Tin Oxide Nanostructures -- 5.4.2 Doping, Loading, and Surface Functionalization with Noble Metals -- 5.4.3 Heterostructures and the Effect of Heterojunctions in Gas-Sensing Performance -- 5.4.4 Composites with Carbon-Based Materials -- 5.4.5 Composites with Conducting Polymers -- 5.5 Photo(Electro)Catalytic Application of 1D Tin Oxide-Based Heterostructures and Doped Materials -- 5.5.1 Photocatalytic Degradation of Organic Pollutants and NO Gas and Photocatalytic Conversion of Benzyl Alcohol into Benzaldehyde Using 1D Tin Oxide-Based Materials -- 5.5.2 Photo(Electro)Catalytic Water Splitting with 1D Tin Oxide-Based Materials -- 5.6 Other Applications of 1D Tin Oxides -- 5.7 Final Considerations and Future Outlook -- Acknowledgments -- References -- Chapter 6 Recent Advances in Semiconducting Nanowires-Based Hybrid Structures for Solar Cell Application -- 6.1 Introduction -- 6.2 Semiconductor Materials -- 6.2.1 Classification Semiconductors -- 6.2.1.1 Intrinsic Semiconductor -- 6.2.1.2 Extrinsic Semiconductor -- 6.2.2 Solar Photovoltaic Systems -- 6.2.3 Nanomaterials as Semiconductors -- 6.2.4 Effect of Nanomaterial Morphology in Semiconductors Applications -- 6.3 Semiconductor Nanowires Synthesis -- 6.3.1 Advantages of Nanowire Morphology -- 6.3.2 Nanowire Synthesis -- 6.3.2.1 ZnO Nanowire -- 6.3.2.2 SiNWs Preparation -- 6.3.2.3 NaNbO3 Nanowire -- 6.3.2.4 TiO2 Nanowires -- 6.3.2.5 ZnS Nanowire -- 6.3.2.6 CdS Nanowires -- 6.3.3 Characterization
6.4 Applications of Semiconductors in Solar Cells -- 6.4.1 Si-NWs for Solar Cells -- 6.4.2 ZnO Nanowires for Solar Cell -- 6.4.3 Ag-NWs for Solar Cells -- 6.4.4 III-V NWs -- 6.4.5 Cu-NWs for Solar Cell -- 6.5 Conclusion and Future Perspectives -- References -- Chapter 7 Introduction and Types of Semiconducting Hybrid Nanostructures for Optoelectronic Devices -- 7.1 Introduction -- 7.2 Synthesis of Nanostructured Materials -- 7.2.1 1D ZnO Nanostructures (Nanowires/Nanorods) -- 7.2.1.1 Hydrothermal Method: Experimental Steps for ZnO -- 7.2.2 Chemical Vapor Deposition: MoS2 Few Layer Structures -- 7.2.2.1 CVD: Experimental Steps for MoS2 -- 7.2.2.2 CVD: Experimental Steps for ZnO -- 7.2.3 Reduced Graphene Oxide (RGO) -- 7.2.3.1 Experimental Steps for RGO -- 7.2.3.2 Experimental Steps for ZnO/RGO Hybrid Structure -- 7.2.4 Experimental Steps for ZnO/MoS2 Hybrid Structure -- 7.3 Applications of ZnO-Graphene Heterostructure for Photon Detection -- 7.3.1 ZnO Nanowire/Graphene-Based Photodetector -- 7.3.2 Figure of Merits of a Photodetector -- 7.3.3 One-Dimensional Chalcogenide Material for Optoelectronic Applications -- 7.3.4 Heterostructure-Based Solar Cell -- 7.4 Conclusion and Summary -- References -- Chapter 8 One-Dimensional Si Nanostructure-Based Hybrid Systems: Surface-Enhanced Raman Spectroscopy and Photodetector Applications -- 8.1 Introduction -- 8.2 Si Nanostructures -- 8.3 Fabrication of 1D Si Nanostructures -- 8.3.1 Vapor-Liquid-Solid Growth -- 8.3.2 Dry Etching -- 8.3.3 Metal-Assisted Chemical Etching -- 8.4 Applications of 1D Si Nanostructures Hybrids in SERS and Photodetectors -- 8.4.1 SERS Applications of Si Nanostructure Hybrids -- 8.4.2 Si Nanostructure Hybrids for Photodetector Applications -- 8.4.2.1 Device Geometries of Photodetectors -- 8.4.2.2 1D Si Nanostructure Hybrids for Photodetectors -- 8.5 Conclusions -- References
Chapter 9 Hybrid 1D Semiconducting ZnO and GaN Nanostructures for Light-Emitting Devices -- 9.1 Introduction About 1D Nanostructures -- 9.2 Synthesis Methods for the Growth of 1D Nanostructure -- 9.2.1 Hydrothermal Method for the Synthesis of 1D ZnO Nanorods -- 9.2.2 Pulsed Laser Deposition Method -- 9.2.3 Chemical Vapor Deposition Method -- 9.2.4 Metal Organic Chemical Vapor Deposition -- 9.3 Application of ZnO- and GaN-Based Hybrid 1D Nanostructure for Light-Emitting Devices -- 9.4 Conclusion -- References -- Chapter 10 Optoelectronic Properties of TiO2 Nanorods/Au Nanoparticles Heterostructure -- 10.1 Introduction -- 10.2 Theory of Electron Transfer -- 10.2.1 Description of Band Diagram -- 10.2.2 Extinction Estimation -- 10.3 Experimental -- 10.3.1 TiO2 Nanorods -- 10.3.2 Structural, Morphological, Elemental, and Optical Measurement -- 10.3.3 Amperometric Measurement -- 10.4 Results and Discussion -- 10.4.1 Morphology -- 10.4.2 Structural -- 10.4.3 Optical -- 10.4.4 Electrical -- 10.4.4.1 Electron Transfer Mechanism from AuNP to TiO2NR -- 10.4.4.2 Amperometric (Current-Time) -- 10.5 Conclusions -- Acknowledgments -- Compliance with Ethical Standards -- References -- Chapter 11 2D Materials with 1D Semiconducting Nanostructures for High-Performance Gas Sensor -- 11.1 Introduction -- 11.2 Enhanced Gas-Sensing Performances of 1D-Sensing Materials Composited with Different 2D Materials -- 11.2.1 Graphene or Reduced Graphene Oxide-based Composites -- 11.2.2 MoS2-based Composites -- 11.2.3 WS2-based Composite -- 11.2.4 ZnO-based Composite -- 11.2.5 NiO-based Composites -- 11.2.6 Other 2D material-decorated 1D nanomaterial -- 11.3 Remain Challenges and Possible Effective Ways to Explore High-Performance Gas Sensor -- 11.4 Conclusions -- Acknowledgments -- References
Notes Chapter 12 Recent Advancement in the Development of Optical Modulators Based on 1D and 2D Materials
Description based on publisher supplied metadata and other sources
Form Electronic book
Author Aswal, Dinesh K
Joshi, Nirav
ISBN 3527837647
9783527837649
3527837663
9783527837663