Limit search to available items
1011 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Shen, Shaohua

Title Water Photo- and Electro-Catalysis : Mechanisms, Materials, Devices, and Systems
Edition 1st ed
Published Newark : John Wiley & Sons, Incorporated, 2024
©2024

Copies

Description 1 online resource (475 pages)
Contents Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Solar Energy Conversion by Dye-sensitized Photocatalysis -- 1.1 Introduction -- 1.2 Light Absorbers -- 1.2.1 Extending the Light Absorption Spectra of Dyes -- 1.2.2 Enhancement of the Absorption Coefficient of Dyes -- 1.2.3 Molecular Design for Efficient Excited-Charge-Carrier Separation and Injection -- 1.2.4 Molecular Design for Facilitating the Regeneration of the Ground State -- 1.2.5 Improving Stability by Forming a Strong Connection Between a Dye and a Semiconductor -- 1.2.6 New Insights Based on the Light Harvesting of a Dye-sensitized Photocatalyst System -- 1.3 Semiconductor Materials -- 1.3.1 Crystallization of a Semicrystalline Semiconductor with Incorporation into Covalent Organic Frameworks -- 1.3.2 Effect of the Number of Active Sites for Photocatalysis -- 1.3.3 Highly Dispersed Active-Site Molybdenum Sulfide Nanoparticles for Proton Reduction Reaction -- 1.3.4 Improving the Solar Energy Conversion Efficiency by Suppressing Undesirable Backward Reactions -- 1.3.5 Immobilization of Dyes on a Reduced Graphene Oxide Surface Through Formation of Chemical Bonds -- 1.3.6 Metal Phospho-Sulfides and -Selenides as Electron-Conducting and Proton-Adsorbing Materials -- 1.3.7 Effects of Dye Adsorption for the Electronic State of the Semiconductor -- 1.4 Dye-sensitized Photocatalysts in Electrochemical Systems -- 1.5 Conclusion -- References -- Chapter 2 Photocatalytic Hydrogen Production Over CdS-based Photocatalysts -- 2.1 Introduction -- 2.2 Basic Principles for Semiconductor-based Photocatalytic H2 Production from Water -- 2.3 Chemical Additives for H2 Production Enhancement -- 2.4 Construction of CdS-based Heterojunction Photocatalyst to Enhance H2 Production -- 2.4.1 Cocatalytic Materials -- 2.4.1.1 Metal Cocatalyst
2.4.1.2 Transition-metal Oxides and Hydroxides Cocatalyst -- 2.4.1.3 Transition-metal Sulfide Cocatalyst -- 2.4.1.4 Transition-metal Phosphide and Carbide Cocatalyst -- 2.4.2 Semiconductor-Semiconductor Hetero/homojunction Photocatalyst -- 2.4.2.1 Metal Oxide-CdS Heterojunction Photocatalyst -- 2.4.2.2 Carbon-based Materials-CdS Heterojunction Photocatalyst -- 2.4.2.3 CdS-based Homojunction Photocatalyst -- 2.4.2.4 Metal Sulfide, Selenide-CdS Heterojunction Photocatalyst -- 2.4.2.5 Other Semiconductors-CdS Heterojunction Photocatalyst -- 2.5 Conclusions and Perspectives -- References -- Chapter 3 Photocatalytic Hydrogen Production System -- 3.1 Introduction -- 3.2 Fundamentals of Hydrogen Production by Photocatalytic Water Splitting -- 3.3 Classifications of the Photocatalytic Hydrogen Production System -- 3.4 Example of Hydrogen Production System by Photocatalytic Water Splitting -- 3.4.1 Introduction of the Pilot Plant -- 3.4.1.1 Solution-Feeding Subsystem -- 3.4.1.2 Photocatalytic Reaction Subsystem -- 3.4.1.3 Gas Collection Subsystem -- 3.4.1.4 Waste Liquid-Discharging Subsystem -- 3.4.2 Operation Strategies of the Pilot Plant -- 3.4.3 Operation Parameters of the Pilot Plant -- 3.4.4 Operation Results of the Pilot Plant -- 3.4.4.1 Experimental Results -- 3.4.4.2 Simulation Results -- 3.4.5 Life Cycle Assessment of the Pilot Plant -- 3.4.5.1 Goal and Scope Definition -- 3.4.5.2 Life Cycle Inventory Analysis -- 3.4.5.3 Life Cycle Assessment Results -- 3.4.5.4 LCA Analysis in Other Regions of China -- 3.5 Future Work in Terms of Challenges and Chances -- References -- Chapter 4 Photoelectrochemical Water Splitting -- 4.1 Introduction -- 4.2 Oxide Semiconductor -- 4.3 Sulfide Semiconductor -- 4.3.1 CdS -- 4.3.2 CdSe -- 4.3.3 CdTe -- 4.3.4 CulnS2 -- 4.3.5 CuGaSe2 -- 4.3.6 Sb2Se3 -- 4.4 Silicon and III-V Group GaAs, GaN, GaInAs/GaInP/AlInP
4.5 Nitride and Oxynitride Semiconductor -- 4.5.1 C3N4 -- 4.5.2 Ta3N5 -- 4.5.3 GaN, InN -- 4.5.4 TiN, Co3N, etc. -- 4.5.5 TaON -- 4.5.6 GaON, LaTiO2N, etc. -- 4.6 Dye-sensitized Photocatalysts -- 4.7 Strategies for Improving PEC Performance -- 4.7.1 Nanostructure -- 4.7.2 Heterojunction -- 4.7.3 Light Absorption -- 4.7.4 Charge Carrier Separation -- 4.7.5 Oxygen Evolution Cocatalysts -- 4.7.6 Surface Protection Layer -- 4.7.7 Surface Passivation Layer -- 4.8 Summary -- References -- Chapter 5 Photoelectrochemical and Photovoltaic-Electrochemical Water Splitting -- 5.1 Introduction -- 5.2 PEC Water Splitting: Theory and Working Principles -- 5.3 Photoanodes -- 5.3.1 TiO2 Photoanode -- 5.3.2 Silicon (Si) Photoanode -- 5.3.3 BiVO4 Photoanode -- 5.3.4 Fe2O3 Photoanode -- 5.4 Photocathodes -- 5.4.1 Cu2O Photocathode -- 5.4.2 Si Photocathode -- 5.4.3 Sb2Se3 Photocathode -- 5.5 Tandem Devices -- 5.6 PV-EC Water Splitting -- 5.6.1 Si-based PV-EC System -- 5.6.2 III-V Solar Cell-based PV-EC System -- 5.6.3 Perovskite Solar Cell-based PV-EC System -- 5.6.4 Organic Solar Cell-based PV-EC System -- 5.6.5 CuInxGa1−xSe2 Solar Cell-based PV-EC System -- 5.6.6 Dye-sensitized Solar Cell-based PV-EC System -- 5.7 Conclusion -- Acknowledgments -- References -- Chapter 6 Electrocatalytic Reduction of Carbon Dioxide -- 6.1 Introduction -- 6.2 Fundamentals of Electrocatalytic Reduction of CO2 -- 6.2.1 Reaction Pathways and Mechanism -- 6.2.2 Crucial Parameters for CO2 Electroreduction Measurements -- 6.3 Electrolytes -- 6.3.1 Aqueous Electrolytes -- 6.3.1.1 Effect of the Electrolyte pH -- 6.3.1.2 Cation Effects -- 6.3.1.3 Anion Effects -- 6.3.2 Nonaqueous Electrolyte -- 6.3.3 Ionic Liquids -- 6.4 Catalysts for Electrochemical CO2 Reduction -- 6.4.1 Metal Catalysts -- 6.4.1.1 Metal Catalysts for Reduction of CO2 into Formate
6.4.1.2 Metal Catalysts for Reduction of CO2 into CO -- 6.4.1.3 Metal Catalysts for Reduction of CO2 into Hydrocarbons and Alcohols -- 6.4.2 Single-atom/Site Catalysts for Electrochemical Reduction of CO2 -- 6.4.2.1 Fe-based Single-atom/Site Electrocatalysts -- 6.4.2.2 Co-based Single-atom/Site Electrocatalysts -- 6.4.2.3 Ni-based Single-atom/Site Electrocatalysts -- 6.4.2.4 Cu-based Single-atom/Site Electrocatalysts -- 6.4.2.5 Sn-based Single-atom Electrocatalysts -- 6.4.2.6 Other Metal-based Single-atom Electrocatalysts -- 6.4.2.7 Single-atom Alloy Electrocatalysts -- 6.5 Gas Diffusion Electrode for E-CO2RR -- 6.5.1 Gas Diffusion Layer -- 6.5.2 Catalyst Layer -- 6.5.3 Flow Cell -- 6.5.4 Membrane Electrode Assembly (MEA) Cell -- 6.6 Summary and Outlook -- References -- Chapter 7 Electrocatalytic Nitrogen Reduction with Water -- 7.1 The Design and Regulation Strategy of Nitrogen Reduction Reaction (NRR) Catalysts -- 7.1.1 Defect Engineering -- 7.1.1.1 Doping Defect -- 7.1.1.2 Atom Vacancy -- 7.1.2 Atom Engineering -- 7.1.2.1 Single/Double-atoms Catalysis -- 7.1.2.2 Enzyme-like Catalysis -- 7.2 The Influence of Reaction Microenvironment -- 7.2.1 The Effect of Electrolyte Solution -- 7.2.1.1 pH Effect -- 7.2.1.2 Ionic Effect -- 7.2.1.3 Molecular Crowding Effect -- 7.2.2 The Effect of Catalyst Surface Environment -- 7.3 In Situ Characterization Method and Mechanism of Nitrogen Reduction -- 7.3.1 NRR Mechanism -- 7.3.2 In Situ Electrochemical Characterizations for Active Species -- 7.3.2.1 In Situ Fourier-transformed Infrared Spectroscopy (FTIR) Measurement -- 7.3.2.2 In Situ Differential Electrochemical Mass Spectrometry (DEMS) Measurement -- 7.3.2.3 In Situ Scanning Tunneling Microscopy (EC-STM) -- 7.3.2.4 In Situ X-ray Absorption Spectroscopy (XAS) and In Situ Raman Measurement -- 7.3.3 Detection Method for the Nitrogen Reduction Reaction
7.3.3.1 Ammonia Detection -- 7.3.3.2 NOx Contaminations -- 7.3.3.3 Rigorous Experimental Protocols for ENR -- References -- Chapter 8 Recent Advances in Electrocatalytic Organic Transformations Coupled with H2 Evolution -- 8.1 Introduction -- 8.2 Representative Organic Compounds for Anodic Oxidation -- 8.2.1 Oxidation of Hydrocarbons -- 8.2.2 Oxidation of Oxygen-containing Compounds -- 8.2.3 Oxidation of Amines -- 8.3 Representative Anodic Addition Reactions with Nucleophiles and Radicals -- 8.3.1 Cyanation Reactions -- 8.3.2 Trifluoromethylation Reactions -- 8.3.3 Halogenation Reactions -- 8.4 Oxidative Coupling Reactions Coupled with H2 Production -- 8.4.1 C-C Coupling Reactions -- 8.4.2 C-N Coupling Reactions -- 8.4.3 C-O Oxygenation Reactions -- 8.4.4 C-S Coupling Reactions -- 8.4.5 C-P Coupling Reactions -- 8.4.6 S-S Coupling Reactions -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 The Advancement of Catalysts for Proton-Exchange Membrane Fuel Cells -- 9.1 The Introduction of Proton-Exchange Membrane Fuel Cells -- 9.2 Proton-Exchange Membrane Fuel Cells -- 9.3 The Anode Hydrogen Oxidation Reaction -- 9.3.1 Hydrogen Oxidation Reaction Mechanism -- 9.4 The Cathode Oxygen Reduction Reaction -- 9.4.1 ORR Mechanism -- 9.4.2 Platinum-group-metal-based Catalysts -- 9.4.2.1 Size Control - from Nanoparticle to Single Atoms -- 9.4.2.2 Composition Control -- 9.4.2.3 Shape Engineering -- 9.4.2.4 Atomic Ordering -- 9.4.3 PGM-free Catalysts -- 9.4.3.1 One-pot Pyrolysis -- 9.4.3.2 Template-derived Structures -- 9.4.3.3 MOF-derived Structures -- 9.5 Conclusions and Remarks -- References -- Chapter 10 Advanced X-ray Absorption Spectroscopy on Electrocatalysts and Photocatalysts -- 10.1 Introduction -- 10.2 Synchrotron-based X-ray Absorption Spectroscopy -- 10.2.1 Progress of In Situ Cells -- 10.3 Energy Generation Systems
Notes 10.3.1 Electrocatalysts
Description based on publisher supplied metadata and other sources
Genre/Form Electronic books
Form Electronic book
Author Wang, Shuangyin
ISBN 3527831002
9783527831005
3527830995
9783527830992