Limit search to available items
23 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Fermentation and biochemical engineering handbook : principles, process design, and equipment
Edition Third edition / edited by Henry C. Vogel, Chapel Hill, WC and Celeste M. Todaro, Celes Tech Inc., Haddonfield, New Jersey
Published Amsterdam : William Andrew, an imprint of Elsvier, 2014
Online access available from:
ScienceDirect eBooks    View Resource Record  
ProQuest Ebook Central Subscription    View Resource Record  
EBSCO eBook Academic Collection    View Resource Record  

Copies

Description 1 online resource (xix, 434 pages) : illustrations
Contents Machine generated contents note: pt. I Fermentation -- 1. Fermentation Pilot Plant / Shinsaku Takayama -- Prologue -- 1.0. Microbial Fermentation -- 1.1. Fermentation Pilot Plant -- 1.2. Bioreactors and Culture Techniques for Microbial Processes -- 1.3. Application of Computer Control and Sensing Technologies for Fermentation Process -- 1.4. Scale-Up -- 1.5. Bioreactors for Recombinant DNA Technology -- Further Reading -- 2. Mammalian Cell Culture System / Seijo Sato -- 1.0. Introduction -- 2.0. Culture Media -- 3.0. Microcarrier Culture and General Control Parameters -- 4.0. Perfusion Culture Systems as a New High Density Culture Technology -- 5.0. Sedimentation Column Perfusion Systems -- 6.0. High Density Culture Using a Perfusion Culture System with Sedimentation Column -- Acknowledgment -- References and Bibliography (Section 2) -- Further Reading -- 3. Bioreactors for Plant Cell Tissue and Organ Cultures / Shinsaku Takayama -- 1.0. Background of the Technique -- Historical Overview
Note continued: 1.1. The Biofuel and Bio-Based Chemical Industries Originated with Natural Fermentation Products -- 1.2. Theory: Principles of Chemistry and Biology Guide the Selection of Fermentation Products, Substrates, and Organisms -- 1.3. Historical Foundation of Biofuel- and Bio-Based Chemical Fermentation Industries -- 2.0. Fermentation Organism Development for a Biofuel- or Bio-Based Chemical Product -- 2.1. Native Strain Screening, Selection, and Genetic Modification -- 2.2. Adaption to the Fermentation Background and Lowest Cost Nutrient Mix, to Overcome Inhibition and Minimize Operating Costs -- 3.0. Biofuel- or Bio-Based Chemical Fermentation Process Development and Design -- 4.0. Practical Applications -- 4.1. Selection -- 4.2. Critical Factors -- 4.3. Troubleshooting -- 5.0. Plant Operations -- 6.0. References -- 7.0. Examples of Biofuel- and Bio-Based Chemical Industrial Production Processes
Note continued: 10.0. Filtering Centrifuges -- 10.1. Cake Washing -- 11.0. Vertical Basket Centrifuges -- 11.1. Applications -- 11.2. Solids Discharge -- 11.3. Operational Speeds -- 11.4. Maintenance -- 12.0. Horizontal Peeler Centrifuge -- 12.1. Applications -- 12.2. Operation -- 13.0. Inverting Filter Centrifuge -- 13.1. Operation -- 13.2. Maintenance -- 14.0. Maintenance: Centrifuge -- 14.1. Bearings -- 15.0. Safety -- 16.0. Pressure and Centrifugation -- 17.0. Manufacturers -- 17.1. Filtering Centrifuges -- 17.2. Sedimentation Centrifuges -- 17.3. Oxygen Analyzers -- References -- Further Reading -- 14. Drying / Laura Pellegrini -- Section I Indirect Drying -- 1.0. Introduction -- 2.0. Theory -- 3.0. Equipment Selection -- 3.1. Testing and Scale-Up -- 3.2. Cost Estimation -- 3.3. Installation Concerns -- 3.4. Safety Considerations -- 4.0. Equipment Manufacturers -- 5.0. Directory of Manufacturers -- Further Reading (for Section I Indirect Drying) -- Section II Direct Drying -- 1.0. Introduction
Note continued: 12.5. Evaluation of Surfaces -- 12.6. Evaluation of Water -- 12.7. Evaluation of Compressed Cases -- 12.8. Evaluation of Personnel -- 13.0. Equipment List -- References -- 19. Environmental Concerns / Maung K. Min -- 1.0. Environmental Regulations and Technology -- 1.1. Regulatory Concerns -- 1.2. Technology -- 2.0. Laws, Regulations and Permits -- 2.1. Air -- 2.2. Water -- 2.3. Solid Waste -- 2.4. Occupational Safety and Health Act (OSHA) -- 2.5. Environmental Auditing -- 2.6. National Environmental Policy Act -- 2.7. Storm Water Regulations -- 3.0. Technology (Waste Water) -- 3.1. NPDES -- 3.2. Effluent Limitations -- 3.3. Continuous Discharger -- 3.4. Non-Continuous Discharger -- 3.5. Mass Limitations -- 3.6. Waste Water Characterization -- 3.7.Common Pollutants -- 4.0. Waste Water Treatment Strategy -- 4.1. Activated Carbon -- 4.2. Air Stripping -- 4.3. Steam Stripping -- 4.4. Heavy Metals Removal -- 4.5. Chemical Precipitation -- 4.6. Electrolysis -- 4.7. Ion Exchange
Note continued: 2.0. Definitions -- 3.0. Psychrometric Charts -- 4.0. Drying Theory -- 5.0. Fundamental Aspects of Dryer Selection -- 5.1. Batch Direct Dryers -- 5.2. Batch Fluid Bed Dryers -- 5.3. Batch Rotary Dryers -- 5.4. Ribbon Dryers -- 5.5. Paddle Dryers -- 5.6. Agitated Pan Dryers -- 5.7. Continuous Dryers -- 5.8. Spray Dryers -- 5.9. Flash Dryers -- 5.10. Ring Dryers -- 5.11. Mechanically Agitated Flash Dryers -- 5.12. Rotary Tray or Plate Dryers -- 5.13. Fluid Bed Dryers -- 6.0. Data Requirements -- 7.0. Sizing Dryers -- 7.1. Spray Dryers -- 7.2. Flash Dryers -- 7.3. Tray Dryers -- 7.4. Fluid Bed Dryers -- 7.5. Belt or Band Dryers -- 8.0. Safety Issues -- 8.1. Specific Features -- 9.0. Decisions -- 10.0. Trouble Shooting Guide -- 11.0. Recommended Vendors List -- Further Reading (for Section II: Direct Drying) -- pt. IV Purification -- 15. Crystallization / Stephen M. Glasgow -- 1.0. Introduction -- 2.0. Theory -- 2.1. Field of Supersaturation -- 2.2. Formation of a Supersaturated Solution
Note continued: 2.0. Fermentation Department Equipment and Space Requirements -- 2.1. The Microbiological Laboratories -- 2.2. Analytical Support Laboratories -- 2.3. Production: Raw Material Storage -- 2.4. Media Preparation or Batching Area -- 2.5. The Seed Fermenter Layout -- 2.6. The Main Fermenter Layout -- 2.7. Nutrient Feed Tanks -- 2.8. Sterile Filters -- 2.9. Air Compressors -- 2.10. Valves (to Maintain Sterility) -- 2.11. Pumps -- 2.12. Cooling Equipment -- 2.13. Environmental Control -- 3.0. General Design Data -- 4.0. Continuous Sterilizers -- 4.1.A Justification for Continuous Sterilization -- 4.2. Support Equipment for a Sterilizer -- 4.3. The Sterilizing Section -- 4.4. The Cooling Section -- 5.0. Fermenter Cooling -- 6.0. The Design of Large Fermenters (Based on Aeration) -- 6.1. Agitator Effectiveness -- 6.2. Fermenter Height -- 6.3. Mixing Horsepower by Aeration -- 6.4. Air Sparger Design -- 6.5.Comparison of Shear of Air Bubbles by Agitators and Jets
Note continued: 2.0. Media Formulations -- 3.0. General Applications -- 4.0. Bioreactors -- Hardware Configuration -- 5.0. Bioreactor Size -- 6.0. Culture Period -- 7.0. Aeration and Agitation -- 8.0. Microbial Contamination -- 9.0. Characteristics -- 10.0. Manipulation -- 11.0. Scale-up Problems -- 12.0. Bioprocess Measurement and Control -- References (Section 3) -- Further Reading -- 4. Nutritional Requirements in Fermentation Processes / Willem H. Kampen -- 1.0. Introduction -- 2.0. Nutritional Requirements of the Cell -- 3.0. The Carbon Source -- 4.0. The Nitrogen and Sulfur Source -- 5.0. The Source of Trace and Essential Elements -- 6.0. The Vitamin Source and Other Growth Factors -- 7.0. Physical and Ionic Requirements -- 8.0. Media Development -- 9.0. Effect of Nutrient Concentration on Growth Rate -- References -- Further Reading -- 5. Fermentation for Biofuels and Bio-Based Chemicals / Steve Licht -- 1.0. Introduction, History, and Theory
Note continued: 2.3. Appearance of Crystalline Nuclei -- 2.4. Growth of Nuclei to Size -- 3.0. Crystallization Equipment -- 3.1. Evaporative Crystallizer -- 3.2. Vacuum Cooling Crystallizer -- 3.3. Cooling Crystallizer -- 3.4. Batch Crystallization -- 4.0. Data Needed for Design -- 5.0. Special Considerations for Fermentation Processes -- 5.1. Temperature Limitation -- 5.2. High Viscosity -- 5.3. Long Desupersaturation Time -- 5.4. Slow Crystal Growth Rate -- 6.0. Method of Calculation -- 7.0. Troubleshooting -- 7.1. Deposits -- 7.2. Crystal Size Too Small -- 7.3. Insufficient Vacuum -- 7.4. Instrument Malfunction -- 7.5. Foaming -- 7.6. Pump Performance -- 8.0. Summary -- 9.0. American Manufacturers -- Further Reading -- 16. Chromatography / Frederick J. Dechow -- 1.0. Introduction -- 1.1. Chromatographic Processes with Ion Exchange Resins -- 1.2. Chromatographic Separation -- 2.0. Theory -- 2.1. Selectivity -- 2.2. Kinetics -- 2.3. Chromatographic Theory
Note continued: 2.4. Rate the Selected Physical Distillation Column for Alternative Operations -- 3.0. Design of a Distillation System for a New Application -- 3.1. Laboratory Testing for Design of a Commercial Scale Distillation System -- 3.2. How to Design a Completely New Distillation System -- 4.0. Control and Automation of Distillation Systems -- 4.1. Practical and Theoretical Aspects of Controlling a Commercial Distillation System -- 4.2. PLC and DCS System Software Development for Control of a Distillation System -- 4.3. Implementing Fully Automated Operation Using ISA S88.01 Model for Batch Control -- 5.0. Distillation Plant Operations -- 5.1. Startup Preparations and Normal Operation -- 5.2. Performance Testing -- 5.3. Troubleshooting -- 5.4. Safety Concerns and Emergency Handling -- 5.5. Distillation System Shutdown -- References -- 11. Solvent Extraction / David B. Todd -- Extraction Concepts -- 1.1. Theoretical Stage -- 2.0. Distribution Data -- 3.0. Solvent Selection
Note continued: 3.0. Ion Exchange Materials and Their Properties -- 3.1. Ion Exchange Matrix -- 3.2. Functional Groups -- 3.3. Porosity and Surface Area -- 3.4. Particle Density -- 3.5. Particle Size -- 4.0. Laboratory Evaluation of Resin -- 5.0. Process Considerations -- 5.1. Design Factors -- 5.2. Scaling-up Fixed Bed Operations -- 5.3. Sample Calculation -- 5.4.Comparison of Packed and Fluidized Beds -- 5.5. Chromatographic Scale-Up Procedures -- 5.6. Pressure Drop -- 5.7. Ion Exchange Resin Limitations -- 5.8. Safety Considerations -- 6.0. Ion Exchange Operations -- 6.1. Pretreatment -- 6.2. Batch Operations -- 6.3. Column Operations -- 6.4. Elution/Regeneration -- 7.0. Industrial Chromatographic Operations -- References -- pt. V Plant Operations -- 17. Water Systems for Pharmaceutical Facilities / Mark Keyashian -- 1.0. Introduction -- 2.0. Scope -- 3.0. Source of Water -- 4.0. Potable Water -- 5.0. Water Pretreatment -- 6.0. Multimedia Filtration -- 7.0. Water Softening
Note continued: 4.0. Calculation Procedures -- 4.1. Simplified Solution -- 4.2. Sample Stage Calculation -- 5.0. Drop Mechanics -- 6.0. Types of Extraction Equipment -- 6.1. Non-Agitated Gravity Flow Extractors -- 6.2. Stirred Gravity Flow Extractors -- 6.3. Pulsed Gravity Flow Extractors -- 6.4. Centrifugal Extractors -- 6.5. Equipment Size Calculation -- 7.0. Selection of Equipment -- 8.0. Procedure Summary -- 9.0. Additional Information -- References -- 12. Evaporation / Howard L. Freese -- 1.0. Introduction -- 2.0. Evaporators and Evaporation Systems -- 3.0. Liquid Characteristics -- 4.0. Heat Transfer in Evaporators -- 5.0. Evaporator Types -- 5.1. Jacketed Vessels -- 5.2. Horizontal Tube Evaporators -- 5.3. Short-Tube Vertical Evaporators -- 5.4. Propeller Calandrias -- 5.5. Long-Tube Vertical Evaporators -- 5.6. Falling Film Evaporators -- 5.7. Forced Circulation Evaporators -- 5.8. Plate Evaporators -- 5.9. Mechanically Agitated Thin-Film Evaporators
Note continued: 4.8. Membrane Technology -- 4.9.Organic Removal -- 4.10. Activated Sludge Systems -- 5.0. Air (Emissions of Concern) -- 5.1. Volatile Organic Compounds (VOC) -- 5.2. Inorganics -- 5.3. Particulates -- 6.0. Selecting a Control Technology -- 6.1. Exhaust Stream -- 6.2. Pollutant characteristics -- 7.0. Volatile Organic Compound (VOC) Emissions Control -- 7.1. Thermal Incineration -- 7.2. Catalytic Incineration -- 7.3. Carbon Adsorption -- 7.4. Adsorption and Incineration -- 7.5. Condensation -- 7.6. Absorption -- 8.0. Particulate Control -- 8.1. Fabric Filters (Baghouses) -- 8.2. Cyclones/Mechanical Collectors -- 8.3. Electrostatic Precipitators -- 9.0. Inorganics -- 9.1. Wet Scrubbing -- Further Reading -- 20. Instrumentation and Control Systems / John P. King -- 1.0. Introduction -- 2.0. Measurement Technology -- 3.0. Biosensors -- 4.0. Cell Mass Measurement -- 5.0. Chemical Composition -- 6.0. Dissolved Oxygen -- 7.0. Exhaust Gas Analysis -- 8.0. Measurement of pH
Note continued: 5.10. Flash Pots and Flash Evaporators -- 5.11. Multiple Effect Evaporators -- 6.0. Energy Considerations for Evaporation System Design -- 7.0. Process Control Systems for Evaporators -- 8.0. Evaporator Performance -- 9.0. Heat Sensitive Products -- 10.0. Installation of Evaporators -- 11.0. Troubleshooting Evaporation Systems -- References and Selected Reading Material -- Further Reading -- 13. Centrifugation / Celeste M. Todaro -- 1.0. Introduction -- 2.0. Theory -- 3.0. Equipment Selection -- 3.1. Pilot Testing -- 3.2. Data Collection -- 3.3. Materials of Construction -- 4.0.Components of the Centrifuge -- 5.0. Sedimentation Centrifuges -- 6.0. Tubular-Bowl Centrifuges -- 6.1. Operation -- 7.0. Continuous Decanter Centrifuges (With Conveyor) -- 7.1. Maintenance -- 7.2. Typical Problem for Continuous Decanter Centrifuge with Conveyor -- 8.0. Disk Centrifuges -- 8.1. Operation -- 8.2. Maintenance -- 9.0. Filtering Centrifuges vs. Sedimentation Centrifuges
Note continued: 6.3. Standard Error of the Regression Coefficient -- 6.4.Computed T Value -- 6.5. Standard Error of the Estimate -- 6.6. Analysis of Variance -- 7.0. Methods to Improve the RSM Model -- 8.0. Summary -- References -- Further Reading
Note continued: 6.6. The Effect of Shear on Microorganisms -- 6.7. Other Examples of Jet Air/Liquid Mixing -- 6.8. Mechanical Versus Non-mechanical Agitation -- 7.0. Troubleshooting in a Fermentation Plant -- 8.0. General Comments -- References -- 7. Agitation / James Y. Oldshue -- 1.0. Theory and Concepts -- 2.0. Pumping Capacity and Fluid Shear Rates -- 3.0. Mixers and Impellers -- 3.1. Fluidfoil Impellers -- 4.0. Baffles -- 5.0. Fluid Shear Rates -- 5.1. Particles -- 5.2. Impeller Power Consumption -- 5.3. Mass Transfer Characteristics of Fluidfoil Impellers -- 6.0. Full-Scale Plant Design -- 6.1. Some General Relationships in Large Scale Mixers Compared to Small Scale Mixers -- 6.2. Scale up Based on Data from Existing Production Plant -- 6.3. Data Based on Pilot Plant Work -- 6.4. Sulfite Oxidation Data -- 6.5. Oxygen Uptake Rate in the Broth -- 6.6. Some General Concepts -- 6.7. Reverse Rotation Dual Power Impellers -- 7.0. Full Scale Process Example
Note continued: 7.1. Current Biofuels Technologies: Overview of the Production Processes for Fuel Grade Ethanol from Com, Wheat, or Barley in the United States, Canada, and Europe -- 7.2. The Emerging Next-Generation Biofuel Industry: Examples of 20 Companies Developing New Bio-Based Products and/or Working with New Substrates -- 7.3. OPX Bio Organism Advanced Rapid Development Method Overview -- 7.4. ICM Cellulosic Ethanol Example: Improving Corn Ethanol Plant Yield with Cellulosic Bolt-On Technology -- 7.5. INEOS BIO: An Example of Non-Conventional Fermentation Process with Synthesis Gases (CO, H2, CO2) Generated from Municipal Solid Waste as Substrate for Bacterial Fermentation to Ethanol -- 7.6.A Representative List of Cellulosic and Non-Traditional Biofuel Production Processes, Under Development or Entering Commercial Demonstrations, 2000 -- 2013 -- pt. II Equipment Design -- 6. Fermentation Design / Allan C. Soderberg -- 1.0. Introduction
Note continued: 7.3. Microfiltration for Removal of Microorganisms or Cell Debris -- 7.4. Production of Bacteria-free Water -- 7.5. Production of Pyrogen-free Water -- 8.0. Glossary of Terms -- Acknowledgment -- Appendix: List of Membrane Manufacturers (Microfiltration and Ultrafiltration) -- References -- Further Reading -- 10. Distillation for Recovery of Biofuels and Bio-Based Chemicals / Steve Licht -- 1.0. Introduction and Theory -- 1.1. Introduction with Historical Background -- 1.2. How a Distillation System Works -- 1.3. Theory of Multi-Component Vapor-Liquid Equilibrium (VLE) Relationships that Determine Distillation Process Feasibility and Capability -- 2.0. Development of a Distillation Application -- 2.1. Using VLE Information for Conceptual Distillation Process Synthesis -- 2.2. Using a Computer Process Simulator to Model a Candidate Distillation Process -- 2.3. Selection of Column Internal Contacting Equipment
Note continued: 8.0. Activated Carbon -- 9.0. Ultraviolet Purification -- 10.0. Deionization -- 11.0. Purified Water -- 12.0. Reverse Osmosis -- 13.0. Water for Injection -- 14.0. Water System Documentation -- Appendix I Existing and Proposed U.S. EPA Drinking Water Standards -- Appendix II Department of Health, Education and Welfare Public Health Service -- Special Note -- References -- 18. Sterile Formulation / Mark R. Walden -- 1.0. Introduction -- 2.0. Sterile Bulk Preparation -- 3.0. Isolation of Sterile Bulk Product -- 3.1. General Considerations -- 4.0. Crystallization -- 5.0. Filtering/Drying -- 6.0. Milling/Blending -- 7.0. Bulk Freeze Drying -- 8.0. Spray Drying -- 9.0. Equipment Preparation -- 10.0. Validation -- 11.0. Filling Vials with Sterile Bulk Materials -- 11.1. Vial and Stopper Preparation -- 11.2. Filling of Vials -- 12.0. Environment -- 12.1. Aseptic Areas -- 12.2. Controlled Areas -- 12.3. Monitoring the Environment -- 12.4. Evaluation of the Air
Note continued: 8.0. The Role of Cell Concentration on Mass Transfer Rate -- 9.0. Some Other Mass Transfer Considerations -- 10.0. Design Problems in Biochemical Engineering -- 11.0. Solution-Fermentation Problems -- List of Abbreviations -- Further Reading -- pt. III Recovery -- 8. Filtration / Celeste M. Todaro -- 1.0. Introduction -- 1.1. Depth Filtration -- 2.0. Cake Filtration -- 3.0. Theory -- 3.1. Flow Theory -- 3.2. Cake Compressibility -- 4.0. Particle Size Distribution -- 5.0. Optimal Cake Thickness -- 6.0. Filter Aid -- 7.0. Filter Media -- 8.0. Equipment Selection -- 8.1. Pilot Testing -- 9.0. Continuous vs. Batch Filtration -- 10.0. Rotary Vacuum Drum Filter -- 10.1. Operation and Applications -- 10.2. Optimization -- 11.0. Nutsches -- 11.1. Applications -- 11.2. Operation -- 11.3. Maintenance -- 12.0. BHS Autopress -- 12.1. Applications -- 12.2. Operation -- 13.0. Manufacturers -- 13.1. Rotary Drum Vacuum Filters -- 13.2. Nutsches -- 13.3. Autopress -- References -- Further Reading
Note continued: 9. Cross-Flow Filtration / Ramesh R. Bhave -- 1.0. Introduction -- 2.0. Cross-flow vs. Dead End Filtration -- 3.0.Comparison of Cross-Flow with Other Competing Technologies -- 4.0. General Characteristics of Cross-Flow Filters -- 4.1. Polymeric Microfilters and Ultrafilters -- 4.2. Inorganic Microfilters and Ultrafilters -- 5.0. Operating Configurations -- 5.1. Batch System -- 5.2. Feed and Bleed -- 5.3. Single vs. Multistage Continuous System -- 6.0. Process Design Aspects -- 6.1. Minimization of Flux Decline with Backpulse or Backwash -- 6.2. Uniform Trans Membrane Pressure Filtration -- 6.3. Effect of Operating Parameters on Filter Performance -- 6.4. Membrane Cleaning -- 6.5. Pilot Scale Data and Scaleup -- 6.6. Troubleshooting -- 6.7. Capital and Operating Cost -- 6.8. Safety and Environmental Considerations -- 7.0. Applications Overview -- 7.1. Clarification of Fermentation Broths -- 7.2. Purification and Concentration of Enzymes
Note continued: 9.0. Water Purity -- 10.0. Temperature -- 11.0. Pressure -- 12.0. Mass -- 13.0. Mass Flow Rate -- 14.0. Volumetric Flow Rate -- 15.0. Broth Level -- 16.0. Regulatory Control -- 16.1. Single Stage Control -- 17.0. Dynamic Modeling -- 18.0. Multivariable Control -- 18.1. Batch Control -- 19.0. Artificial Intelligence -- 20.0. Distributed Control Systems -- References -- Further Reading -- 21. Statistical Methods for Fermentation Optimization / Edwin O. Geiger -- 1.0. Introduction -- 2.0. Traditional One-Variable-at-a-Time Method -- 3.0. Design of Experiment (DOE) -- 3.1. Evolutionary Optimization -- 3.2. Response Surface Methodology -- 4.0. Advantages of RSM -- 4.1. Maximum Information from Experiments -- 4.2. Forces One to Plan -- 4.3. Know How Long Project Will Take -- 4.4. Interaction Between Variables -- 4.5. Multiple Responses -- 4.6. Design Data -- 5.0. Disadvantages of RSM -- 6.0. Potential Difficulties with RSM -- 6.1. Correlation Coefficient -- 6.2. Regression Coefficients
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Biochemical engineering -- Handbooks, manuals, etc
Fermentation -- Handbooks, manuals, etc
Biochemical engineering.
Fermentation.
Fermentation.
GĂ©nie biochimique.
Genre/Form Handbooks and manuals.
Form Electronic book
Author Todaro, Celeste L., editor.
Vogel, Henry C., editor.
ISBN 1455730467
9781455730469