Limit search to available items
640 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Hajalilou, Abdollah

Title Magnetic Nanoparticles : Synthesis, Characterization, and Applications
Published Newark : John Wiley & Sons, Incorporated, 2023
©2023

Copies

Description 1 online resource (347 pages)
Contents Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to Magnetic Materials -- 1.1 Theory and Fundamentals of Magnetization -- 1.2 Type of Magnetism -- 1.2.1 Diamagnetism -- 1.2.2 Paramagnetism -- 1.2.3 Ferromagnetism -- 1.2.4 Antiferromagnetism -- 1.2.5 Ferrimagnetism -- 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials -- 1.3.1 Intrinsic Properties -- 1.3.1.1 Saturation Magnetization (Ms) -- 1.3.1.2 Curie Temperature (TC) -- 1.3.1.3 Magnetic Anisotropy -- 1.3.2 Extrinsic Properties -- References -- Chapter 2 Type and Characteristics of Magnetic Materials -- 2.1 Introduction -- 2.2 Soft and Hard Magnetic Materials -- 2.2.1 Soft Magnetic Materials -- 2.2.2 Hard Magnetic Materials -- 2.3 Hysteresis Loop -- 2.3.1 The Process of Hysteresis Loop Formation -- 2.3.2 Domain Orientation in Directions Favorable to the Applied Field -- 2.4 Magnetic Characteristic Measurements -- 2.4.1 M-H Hysteresis Loop -- 2.4.2 B-H Hysteresis Loop -- 2.5 Magnetic Losses -- 2.5.1 Eddy Current Losses -- 2.5.2 Residual Losses -- 2.5.3 Hysteresis Losses -- References -- Chapter 3 Insight into the Synthesis of Nanostructured Magnetic Materials -- 3.1 Introduction -- 3.2 Synthesis Process of the Magnetic Nanoparticles -- 3.3 Importance of the Synthesis and/or Preparation Methods -- 3.4 Dependency of Particle Size and Shape on Synthesize Route -- 3.5 Questions Related to the Selected Synthesis Route -- 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size -- 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape -- 3.8 Introduction to Wet-Chemical Synthesis Route -- 3.8.1 Microemulsion -- 3.8.2 Hydrothermal Method -- 3.8.3 Co-precipitation -- 3.8.4 Sonochemical -- 3.8.5 Sol-Gel Method -- 3.8.6 Thermal Decomposition -- 3.8.7 Solvothermal -- 3.8.8 Microwave-Assisted Route -- 3.8.9 Green-Assisted Synthesis Route
3.9 Introduction to Solid-State Routes to Synthesize Magnetic Nanoparticles -- 3.9.1 A Standard Ceramic Route -- 3.9.2 Mechanical Alloying (MA) Process -- 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes -- 3.10.1 Magnetic Separation Technique (MST) -- 3.10.2 Curie Temperature Separation Technique -- 3.10.3 Oxidation of Wuestite -- References -- Chapter 4 Parallel Evolution of Microstructure-Magnetic Properties Relationship in Nanostructured Ferrites -- 4.1 Introduction -- 4.2 Insights into a Sintering Phenomenon -- 4.2.1 Magnetism-Microstructure Parallel Evolution in Yttrium Iron Garnet -- 4.2.2 Magnetism-Microstructure Parallel Evolution in Hard Ferrites -- 4.2.3 Magnetism-Microstructure Parallel Evolution in Soft Ferrites -- 4.3 Soaking or Sintering Time -- 4.4 Heating Rate -- 4.5 Trends of Sintering: Single-Sample and Multi-Sample Sintering -- 4.6 Conclusion and Perspective Outlook -- References -- Chapter 5 Surface Modification of Magnetic Nanoparticles -- 5.1 Introduction -- 5.2 Employed Technical Resources for Surface Modification -- 5.2.1 Plasma Treatment -- 5.2.2 Corona Discharge -- 5.2.3 Parylene Coating -- 5.2.4 Photolysis -- 5.2.5 Other Methods and Examples -- 5.3 Surface Modification of Magnetic Nanoparticles with Surfactant -- 5.4 Current Trends for Surface Modification of Nanomaterials -- 5.4.1 Chemical Functionalization -- 5.4.2 Physical Functionalization -- 5.5 Surface Modification Based on Organic Reactions -- 5.6 Surface Modification Based on Polymerization -- 5.7 Surface Modification with Inorganic Layers -- 5.8 Summary -- References -- Chapter 6 Insight into Superconducting Quantum Interference Devices (SQUID) -- 6.1 Introduction to SQUID -- 6.1.1 A Radio Frequency (RF) SQUID -- 6.1.2 A Direct Current (DC) SQUID -- 6.2 Superconducting Materials Used in SQUID
6.3 What Is the Basic Principle in SQUID VSM Magnetometer? -- 6.4 Superconductivity -- 6.4.1 Electron-Lattice Interaction -- 6.4.2 Cooper Pairs -- 6.4.3 Energy Gap -- 6.4.4 Coherence -- 6.4.5 Flux Quantization -- 6.5 Josephson Tunneling (JT) Phenomenon -- 6.6 Utilizations and Applications of SQUID -- 6.7 Advantage and Disadvantage of SQUID Compared to Other Techniques in Characterization of Magnetic Nanomaterials -- References -- Chapter 7 The Principle of SQUID Magnetometry and Its Contribution in MNPs Evaluation -- 7.1 Introduction -- 7.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study -- 7.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other -- 7.4 Types of Information Obtained from the ZFC and FC Curves -- 7.4.1 Blocking Temperature -- 7.4.2 Néel Temperature -- 7.4.3 Types of Magnetism -- 7.4.4 Spin Glass (SG) and Superparamagnetic (SPM) -- 7.5 SQUID Magnetometry: Magnetic Measurements -- 7.5.1 Magnetization Versus Temperature, M(T) -- 7.5.1.1 Blocking Temperature (TB) as a Function of Particle Size Distribution -- 7.5.1.2 Dependency of Blocking Temperature (TB) on the Volume of Particles -- 7.5.1.3 The Field Dependence of the Blocking Temperature -- 7.5.1.4 The Blocking Temperature (TB) Versus Applied Pressure, and Density -- 7.5.1.5 Effect of Heat Treatment on Blocking Temperature -- 7.5.2 Magnetization as a Function of Applied Magnetic Field -- References -- Chapter 8 Type of Interactions in Magnetic Nanoparticles -- 8.1 Introduction -- 8.2 Magnetic Dipole-Dipole Interaction Between Magnetic Nanoparticles -- 8.3 Exchange Interaction -- 8.3.1 Direct Exchange Interaction -- 8.3.2 Indirect Exchange Interaction -- 8.4 Super-Exchange Interaction -- 8.5 Dipolar Interactions -- 8.6 Spin-Orbit Interaction -- References
Chapter 9 Insight into AC Susceptibility Measurements in Nanostructured Magnetic Materials -- 9.1 Introduction -- 9.2 AC Susceptibility Measurement -- 9.3 AC Susceptibility as a Probe of Magnetic Dynamics in a Wide Variety of Systems -- 9.3.1 AC Susceptibility as a Probe of Low-Frequency Magnetic Dynamics -- 9.3.2 AC Susceptibility as a Probe of High-Frequency Magnetic Dynamics -- 9.4 Information Obtained from Susceptibility Measurements -- 9.5 Insight into the Interaction Between Magnetic Nanoparticles and Used Models -- 9.5.1 Néel-Brown Model -- 9.5.2 Vogel-Fulcher Model -- 9.5.3 Conventional Critical Slowing Down Model -- 9.5.4 Power Law (P-L) Model -- 9.6 Examples of Evaluation of AC Susceptibility in MNPs -- 9.7 Using AC Susceptibility Measurements to Probe Transitions in Colloidal Suspensions -- References -- Chapter 10 Induced Effects in Nanostructured Magnetic Materials -- 10.1 Introduction -- 10.2 The Spin-Canted Effect -- 10.3 Spin-Glass-Like Behavior in Magnetic Nanoparticles -- 10.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles -- 10.5 Finite Size Effects on Magnetic Properties -- 10.6 Surface Effect in Nanosized Particles -- 10.7 Memory Effect -- References -- Chapter 11 Insight into Superparamagnetism in Magnetic Nanoparticles -- 11.1 Introduction -- 11.2 Description of Superparamagnetism Based on Size of Particles and Magnetic Measurements -- 11.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H) -- 11.4 SPM Detection Based on ZFC and FC Magnetization Curves -- References -- Chapter 12 Mössbauer Spectroscopy -- 12.1 Introduction to Mössbauer Spectroscopy -- 12.2 Observed Effects in Mössbauer -- 12.2.1 Mössbauer Effect -- 12.2.2 Recoil Effect -- 12.2.3 Doppler Effect -- 12.3 Hyperfine Interactions -- 12.3.1 Electric Monopole Interaction
12.3.1.1 S-Electron Density (Indirectly p and d-Electron Density) -- 12.3.1.2 Dependency of Isomer Shift on Spin State -- 12.3.1.3 Dependency of Isomer Shift on Strong Field Ligands -- 12.3.1.4 Dependency of Isomer Shift on Electronegativity of Ligands -- 12.3.2 Electric Quadrupole Interaction (Quadrupole Splitting) -- 12.3.3 Magnetic Dipole Interaction (Magnetic Splitting) -- 12.4 Mössbauer Spectroscopy Applied to Magnetism -- 12.4.1 Superparamagnetic Characterization -- 12.4.2 Mössbauer Spectroscopy Applied to Characterize the Effect of Synthesis Method on the MNPs Behavior -- 12.5 Phase Formation Evaluation Through Mössbauer Spectroscopy -- 12.6 Chemical Composition Evaluation Based on the Mössbauer Spectroscopy Spectra -- References -- Chapter 13 Application of Magnetic Nanoparticles -- 13.1 Introduction -- 13.2 Magnetic Nanoparticles: Application in Engineering -- 13.2.1 Mechanical and Materials Engineering: Magnetic Nanoparticles in Magnetorheological Fluids (MRF) -- 13.2.2 Environmental Engineering: Magnetic Nanoparticles in Wastewater Treatment -- 13.2.3 Surface Engineering -- 13.2.4 Tissue Engineering (TE) -- 13.3 Magnetic Nanoparticle Application in Energy -- 13.3.1 Supercapacitors and Batteries -- 13.3.2 Solar Cells -- 13.4 Magnetic Nanoparticles Application in Medical Science -- 13.4.1 Magnetic Resonance Imaging (MRI) -- 13.4.2 Drug Delivery -- 13.4.3 An Introduction to Hyperthermia (Therapy) in Cancer Treatment (Methods, Mechanisms, Constraints, and Role of Nanotechnology) -- 13.4.3.1 Magnetic Loss Processes Contributed to Magnetic Heating -- 13.4.3.2 Challenges of Magnetic Hyperthermia for Therapeutic Uses -- 13.5 Other General Applications of Magnetic Nanoparticles -- References -- Index -- EULA
Notes Description based on publisher supplied metadata and other sources
Form Electronic book
Author Tavakoli, Mahmoud
Parvini, Elahe
ISBN 3527840761
9783527840762
3527840788
9783527840786