Limit search to available items
147 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Schwartz, Gregory William, 1980-

Title Retinal computation / Gregory William Schwartz
Published London : Academic Press, 2021

Copies

Description 1 online resource
Contents Intro -- Retinal Computation -- Copyright -- Contents -- Contributors -- Introduction -- Purpose and scope -- For graduate courses -- Model species -- Guided by the scientific community that welcomed me -- Acknowledgments -- References -- Part 1: Luminance -- Chapter 1: Photon detection -- How many photons does it take to create a percept? -- Increment threshold and dark light -- Signal and noise for sparse photon detection through the retina -- Amplification in rod phototransduction -- Continuous versus discrete noise in rods -- Reproducibility of the single-photon response -- Retinal mechanisms for noise reduction in sparse photon detection -- Noise reduction at the rod output synapse -- An additional threshold in the inner retina -- The next steps in linking retinal physiology to behavior -- References -- Chapter 2: Luminance adaptation -- Rod vision: A gain control mechanism for each convergence point of two photons -- Cone vision: Separate mechanisms in the circuitry and in the cone -- Adaptation on longer timescales -- Neuromodulators -- Feedback from the brain -- Pigment regeneration -- Receptor composition in RGCs -- Subcellular localization of transducin and arrestin -- Other circuit reconfigurations -- References -- Chapter 3: Absolute luminance detection -- IpRGC types -- Behavioral roles for absolute luminance detection -- Mechanisms for absolute luminance detection in the retina -- M1 ipRGCs -- Spatial integration -- Temporal integration -- Distributed coding -- M4 ipRGCs -- Additional ̀̀non-visuaĺ́ opsins -- Conclusions and future directions -- References -- Part 2: Contrast -- Chapter 4: Contrast sensitivity -- The OFF delta (OFF sustained alpha) RGC -- A cell that sits at the inflection point of its tuning curve -- A conserved microcircuit -- Push-pull mechanism to maximize SNR -- A distributed code for contrast
Contrast sensitivity distributed among RGCs -- Contrast sensitivity distributed among bipolar cells -- Open questions -- References -- Chapter 5: Contrast adaptation and sensitization -- Contrast has a large dynamic range in natural scenes -- Mechanisms of contrast adaptation in the retina -- Photoreceptor to bipolar cell synapses -- Synaptic depression in bipolar cells -- Intrinsic mechanism in RGC spike generation -- Spatial and temporal scales of contrast adaptation -- Contrast sensitization -- Mechanism and spatial properties of contrast sensitization -- Conclusions and future directions -- References -- Chapter 6: Contrast suppression -- Discovery of SbC RGCs in different species -- ̀̀Uniformity detectoŕ́ RGC (rabbit) -- Functional and morphological characteristics -- Mechanism of contrast suppression -- Transient SbC/ON delayed RGC (mouse) -- Functional and morphological characteristics -- Mechanism of contrast suppression -- Sustained SbC RGC (mouse) -- Functional and morphological characteristics -- Mechanism of contrast suppression -- Bursty suppressed-by-contrast (bSbC) RGC (mouse) -- Functional and morphological characteristics -- Mechanism of contrast suppression -- Evidence for SbC RGC projections in the brain -- Speculation about the role of SbC RGCs in behavior -- Conclusions and future directions -- References -- Part 3: Spatial features -- Chapter 7: Texture sensitivity -- Nonlinear spatial integration -- Receptive field subunits and their functional consequences -- Defocus detection -- Is texture sensitivity important for natural scenes? -- The biological substrate of receptive field subunits -- Spatially nonlinear RF models -- Which RGCs are X and Y cells? -- References -- Chapter 8: Surround suppression -- Outer retinal mechanisms: Horizontal cells -- Inner retinal mechanisms -- Inhibition onto bipolar cells and other ACs
Inhibition onto ganglion cells -- Nonlinear surround suppression -- Surround influences beyond suppression -- Conclusions and future directions -- References -- Chapter 9: Object localization -- Spatial acuity and hyperacuity -- Object localization outside the fovea -- ̀̀Spot-detectoŕ́ RGCs -- Spatial information in RGCs at smaller scales than the linear RF center -- Spatial information in RGC populations -- Homogeneous populations -- Heterogeneous populations -- Conclusions and future directions -- References -- Chapter 10: Orientation selectivity -- OS retinal ganglion cells -- Mechanisms for OS in the retina -- OS amacrine cells -- OS in bipolar cell outputs -- How is retinal OS used in the brain? -- References -- Part 4: Motion -- Chapter 11: Direction selectivity -- A history of direction selectivity in the vertebrate retina -- Multiple types of DSGCs in the retina -- Mechanisms of DS in the starburst amacrine cell -- Selective anatomical connectivity between SACs and DSGCs -- Mechanisms of direction selectivity in ganglion cells -- Dendritic integration of excitation and inhibition -- Conclusions and future directions -- References -- Chapter 12: Object motion sensitivity -- Discovery of object motion sensitivity in the retina -- Circuit mechanism -- Identifying specific components of OMS circuits in mouse retina -- The W3 mouse line labels an OMS retinal ganglion cell -- TH-2 ACs provide inhibition to some OMS RGCs -- Delayed and OMS excitation from a glutamatergic AC -- How many RGC types are OMS? -- Is direction selectivity related to OMS? -- Why have multiple RGC types that are OMS? -- References -- Chapter 13: Motion anticipation -- Lag normalization -- Beyond smooth motion -- The next challenge: Causal links to behavior -- References -- Chapter 14: Threat detection -- What visual features specify a threat? -- Looming stimuli
Retinal circuits for looming detection -- ̀̀Approach-sensitivé́ RGCs -- Synchronous oscillations among ̀̀dimming detectorś́ -- Retinal input to brain circuits for threat detection -- Future directions -- References -- Part 5: Other computations -- Chapter 15: Periodic sequence entrainment -- Retinal responses to ̀̀omitted́́ stimuli -- Circuit location and mechanism -- Future directions -- References -- Chapter 16: Color processing -- Photoreceptors form the foundation for color vision -- Theories of efficient and behaviorally relevant color processing -- Chromatic circuits in the outer retina -- Horizontal cells -- Bipolar cells -- Cone to BC connectivity is complex in fish -- Mammals have a conserved S-ON CBC but may differ in additional chromatic BCs -- Chromatic circuits in the inner retina -- Amacrine cells invert S-ON signals into S-OFF -- Color-opponent RGCs in mammals -- Color opponency without selective wiring: The red-green system in Old World primates -- Color circuits with rods -- Regional specialization -- Summary -- References -- Index
Subject Retina.
Computational neuroscience.
Retina
Computational neuroscience
Retina
Form Electronic book
ISBN 9780128231777
0128231777