Limit search to available items
1779 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Microfluidic devices for biomedical applications / edited by Xiujun (James) Li, Yu Zhou
Edition Second edition
Published Oxford : Woodhead Publishing, 2021

Copies

Description 1 online resource (1 volume) : illustrations (black and white, and color)
Series Woodhead Publishing series in biomaterials
Woodhead Publishing series in biomaterials.
Contents Front Cover -- Microfluidic Devices for Biomedical Applications -- Microfluidic Devices for Biomedical Applications -- Copyright -- Contents -- Contributors -- Editor Biographies -- Preface to the first edition -- Preface to the second edition -- 1 -- Materials and methods for microfabrication of microfluidic devices -- 1.1 Introduction -- 1.2 Microfabrication methods -- 1.2.1 Photolithography-based microfabrication -- 1.2.2 Replication-based methods -- 1.2.2.1 Soft lithography -- 1.2.2.2 Hot embossing -- 1.2.2.3 Injection molding -- 1.2.3 Xurography-based microfabrication -- 1.3 Materials -- 1.3.1 Glass -- 1.3.1.1 Fabrication -- 1.3.1.2 Wet chemical etching -- 1.3.1.3 Plasma etching -- 1.3.1.4 Other methods -- 1.3.1.5 Bonding -- 1.3.1.6 Applications and future trends -- 1.3.2 Silicon -- 1.3.2.1 Fabrication -- 1.3.2.2 Bulk micromachining -- 1.3.2.3 Surface micromachining -- 1.3.2.4 Applications and future trends -- 1.3.3 Polymers -- 1.3.3.1 Siloxane elastomers -- Polydimethylsiloxane -- Fabrication of microfluidic devices using PDMS -- Interconnection and bonding -- Applications and future trends -- 1.3.3.2 Thermosetting polymers -- Parylene -- Fabrication of microfluidic devices using parylene -- Interconnection and bonding -- Applications and future trends -- Polyimide -- Polyurethane -- 1.3.3.3 Thermoplastic polymers -- PMMA -- Fabrication of microfluidic devices using PMMA -- PMMA interconnection and bonding -- Polycarbonate -- COC/COP -- 1.3.4 Paper -- 1.3.5 Thread -- 1.3.5.1 Patterning threads -- 1.3.5.2 Applications -- 1.3.6 Pressure sensitive adhesives -- 1.4 Conclusion and future trends -- 1.5 Acronyms -- References -- 2 -- Surface coatings for microfluidic biomedical devices -- 2.1 Introduction -- 2.2 Covalent immobilization strategies: polymer devices -- 2.2.1 Polydimethylsiloxane devices -- 2.2.1.1 Silanization strategies
2.2.1.2 Other immobilization schemes on PDMS -- 2.2.2 Thermoplastic devices -- 2.2.2.1 Polymethyl methacrylate -- 2.2.2.2 Cyclic olefin polymers and copolymers -- 2.2.3 Other polymer devices -- 2.2.3.1 Polycarbonate -- 2.2.3.2 Polystyrene -- 2.3 Covalent immobilization strategies: glass devices -- 2.3.1 Silanization -- 2.3.2 Other strategies -- 2.4 Adsorption strategies -- 2.4.1 Proteins -- 2.4.2 Adsorptive polymer coatings -- 2.4.3 Polyelectrolyte multilayers -- 2.4.4 Surfactants -- 2.5 Other strategies utilizing surface treatments -- 2.6 Examples of applications -- 2.6.1 Lab-on-a-chip drug analysis of blood serum -- 2.6.2 Single cell transcriptome analysis with microfluidic PCR -- 2.6.3 Immunosensor to detect pathogenic bacteria -- 2.7 Conclusions and future trends -- 2.8 Sources of further information and advice -- References -- 3 -- Actuation mechanisms for microfluidic biomedical devices -- 3.1 Introduction -- 3.2 Electrokinetics -- 3.2.1 The electric double layer -- 3.2.2 Electroosmosis -- 3.2.2.1 Electroosmotic slip -- 3.2.2.2 Electroosmotic pumping -- 3.2.2.3 Electroosmotic mixing -- 3.2.3 Electrophoresis -- 3.2.4 AC electrokinetics -- 3.2.5 Dielectrophoresis -- 3.3 Acoustics -- 3.3.1 Basic principles of acoustic fluid and particle manipulation -- 3.3.2 Bulk ultrasonic vibration -- 3.3.3 Surface acoustic waves -- 3.3.3.1 SAW particle manipulation -- 3.3.3.2 SAW fluid actuation and manipulation -- 3.4 Limitations and future trends -- References -- 4 -- Droplet microfluidics for biomedical devices -- 4.1 Introduction-droplets in the wider context of microfluidics -- 4.2 Fundamental principles of droplet microfluidics -- 4.2.1 Droplet flow in microchannels -- 4.2.1.1 Dimensionless numbers -- 4.2.1.2 Flow patterns -- 4.2.1.3 Independent variables for experiments -- 4.2.1.4 Interfacial tension and surfactants -- 4.2.1.5 Surface wetting conditions
4.2.2 Comparison and contrast of single-phase and droplet microfluidics -- 4.2.2.1 General advantages of microfluidic flow -- 4.2.2.2 Disadvantages of single-phase microfluidics -- 4.2.2.3 Advantages of droplet microfluidics -- 4.2.2.4 Disadvantages of droplet microfluidics -- 4.3 Droplet microfluidic approaches -- 4.3.1 Passive microfluidics -- 4.3.1.1 Generation -- 4.3.1.2 Splitting -- 4.3.1.3 Merging -- 4.3.1.4 Mixing -- 4.3.1.5 Incubation -- 4.3.1.6 Sorting -- 4.3.2 Active microfluidics -- 4.3.2.1 Control of multiple droplets -- 4.3.2.2 Control of individual droplets -- 4.4 Biomedical applications -- 4.4.1 Biomaterials -- 4.4.1.1 Materials -- 4.4.1.2 Drug delivery -- 4.4.1.3 Stem cells and tissue engineering -- 4.4.1.4 General perspective on droplet microfluidics and biomaterials -- 4.4.2 Isolated element screening -- 4.4.2.1 Single-cell encapsulation -- 4.4.2.2 On-chip analysis tools -- 4.4.2.3 General perspective on droplet microfluidics and isolated element analysis -- 4.4.3 Bioreactors -- 4.4.3.1 Drug screening -- 4.4.3.2 Artificial cells -- 4.4.3.3 General perspective on droplet microfluidics and bioreactors -- 4.5 Conclusion-perspective on the future of biomedical applications using droplet microfluidics -- References -- 5 -- Controlled drug delivery using microdevices -- 5.1 Introduction -- 5.2 Microreservoir-based drug delivery systems -- 5.2.1 Working principle -- 5.2.2 Microreservoir fabrication -- 5.2.3 Applications -- 5.2.3.1 Silicon-based devices -- 5.2.3.2 Polymer-based device -- 5.3 Micro/nanofluidics-based drug delivery systems -- 5.3.1 Working principle -- 5.3.2 Fabrication of micro/nanofluidic drug delivery systems -- 5.3.3 Applications -- 5.4 Future trends and challenges -- References -- 6 -- Microneedles for drug delivery and monitoring -- 6.1 Introduction -- 6.2 Microneedle design parameters and structure
6.2.1 Microneedle geometry -- 6.2.2 Microneedle materials -- 6.3 Drug delivery strategies using microneedle arrays -- 6.3.1 Solid microneedle arrays -- 6.3.2 Coated microneedle arrays -- 6.3.3 Dissolving microneedle arrays -- 6.3.4 Hollow microneedle arrays -- 6.3.5 Hydrogel-forming microneedle arrays -- 6.4 Other microneedle array applications -- 6.4.1 Microneedle-mediated vaccine delivery -- 6.4.2 Microneedle-mediated skin appearance improvement and delivery of cosmeceuticals -- 6.5 Microneedle-mediated patient monitoring and diagnosis -- 6.5.1 Fluid flow -- 6.5.2 Differential strategies for fluid extraction -- 6.5.3 Integrated designs -- 6.6 Clinical translation and commercialisation of microneedle products -- 6.7 Conclusion -- References -- 7 -- Microfluidic systems for drug discovery, pharmaceutical analysis, and diagnostic applications -- 7.1 Introduction -- 7.2 Microfluidics for drug discovery -- 7.2.1 Identification of druggable targets -- 7.2.2 Hit identification and lead optimization -- 7.2.2.1 Synthesis of drug libraries -- 7.2.2.2 High throughput screening -- 7.2.3 Preclinical evaluation -- 7.2.3.1 In vitro evaluation -- 7.2.3.2 Ex vivo evaluation -- 7.2.3.3 In vivo evaluation -- 7.3 Microfluidics for pharmaceutical analysis and diagnostic applications -- 7.3.1 Microfluidics for pharmaceutical analysis -- 7.3.2 Microfluidics for diagnostic purposes -- 7.4 Examples of commercial microfluidic devices -- 7.5 Future trends -- References -- 8 -- Microfluidic devices for cell manipulation -- 8.1 Introduction -- 8.1.1 Key issues -- 8.2 Microenvironment on cell integrity -- 8.2.1 Cell structure and function -- 8.2.2 External stresses on cells -- 8.3 Microscale fluid dynamics -- 8.3.1 Dimensionless numbers -- 8.3.2 Properties of biofluids -- 8.3.3 Flow dynamics in microchannels -- 8.3.4 System design and operation
8.3.4.1 Complex microfluidic networks -- 8.3.4.2 Bubble extraction -- 8.4 Manipulation technologies -- 8.4.1 Field flow fractionation -- 8.4.2 Hydrodynamic mechanisms -- 8.4.2.1 Deterministic physical interactions -- 8.4.2.2 Inertial migration -- 8.4.2.3 Curved channels -- 8.4.2.4 Hydrodynamic filtering and microfluidic networks -- 8.4.2.5 Biomimetics -- 8.4.2.6 Hydrophoresis and microstructure inclusions -- 8.4.2.7 Hydrodynamic devices -- 8.4.3 Electrokinetic mechanisms -- 8.4.3.1 Dielectrophoresis -- 8.4.3.2 AC electroosmosis -- 8.4.3.3 Electrokinetic devices -- 8.4.4 Acoustic mechanisms -- 8.4.4.1 Acoustic radiation force -- 8.4.4.2 Acoustophoretic devices -- 8.4.5 Optical mechanisms -- 8.4.5.1 Optical devices -- 8.4.6 Magnetic mechanisms -- 8.4.6.1 Magnetic force -- 8.4.6.2 Magnetophoretic devices -- 8.5 Manipulation of cancer cells in microfluidic systems -- 8.5.1 Deformability and migration studies -- 8.5.2 Microfluidic separation and sorting -- 8.5.3 Current challenges in sorting and detection -- 8.6 Conclusion and future trends -- 8.7 Sources of further information and advice -- References -- 9 -- Microfluidic devices for immobilization and micromanipulation of single cells and small organisms -- 9.1 Introduction -- 9.2 Glass microfluidic device for rapid single cell immobilization and microinjection -- 9.3 Microfluidic device for automated, high-speed microinjection of C. elegans -- 9.4 Microfabricated device for immobilization and mechanical stimulation of Drosophila larvae -- 9.5 Conclusions and outlook -- References -- 10 -- Microfluidic devices for developing tissue scaffolds -- 10.1 Introduction -- 10.2 Key issues and technical challenges for successful tissue engineering -- 10.2.1 Clinically relevant cell numbers: from stem cells through to mature, fully differentiated cells -- 10.2.2 Effective cell seeding and scaffold colonization
Notes Print version record
Subject Microfluidic devices.
Biomedical materials.
Biomedical materials
Microfluidic devices
Form Electronic book
Author Li, Xiujun, editor
Zhou, Yu (Research scientist), editor.
ISBN 9780128227558
0128227559