Limit search to available items
652 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author P. M., Visakh

Title Nanotechnology in Electronics : Materials, Properties, Devices
Published Newark : John Wiley & Sons, Incorporated, 2023
©2022

Copies

Description 1 online resource (379 pages)
Contents Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanotechnology in Electronics, Materials Properties, and Devices: State of the Art and Future Challenges -- 1.1 Graphene-based Nanoelectronic Biosensors -- 1.2 Zinc Oxide Piezoelectric Nanogenerators for Low-frequency Applications -- 1.3 Investigation of the Hot Carrier-induced Degradation in Nanoscale Junctionless MOSFETs: A Reliability-based Analysis -- 1.4 Study of Electrostatic and Dispersion Forces in Nanoelectromechanical Systems (NEMS) -- 1.5 Nanomaterials for Wearable, Flexible, and Stretchable Strain/Pressure Sensors -- 1.6 Conductive Nanomaterials for Printed and Flexible Electronics Application -- 1.7 Metal-oxide Semiconductors for Noninvasive Diagnosis of Breast Cancer -- 1.8 Down-conversion Photoluminescence Properties of ZrO2: Ln3+ (Ln & -- equals -- Eu, Sm, Er, Tb, Ho, Tm, Pr, Gd, Dy) Films Formed by Plasma Electrolytic Oxidation -- 1.9 Multiferroics for Spintronic Applications -- 1.10 Quartz Tuning Fork Based Nanosensors -- References -- Chapter 2 Graphene-based Nanoelectronic Biosensors -- 2.1 Introduction on Graphene -- 2.2 History of Graphene -- 2.3 Properties of Graphene -- 2.4 Fundamentals of G-Derivatives -- 2.5 Synthesis of Graphene -- 2.5.1 Graphene-based Nanoelectronics -- 2.5.2 Graphene-based Biosensors -- 2.5.3 Graphene in Electrochemical Biosensing Platforms -- 2.5.4 Field-effect Transistors -- 2.5.5 Optical Platform for Biosensing -- 2.6 Applications of Graphene-based Biosensors -- 2.6.1 Graphene-based Electrochemical Biosensors -- 2.6.2 Detection of Acute Myocardial Infarction -- 2.6.3 Detection of Lung Cancer -- 2.6.4 Detection of Asthma -- 2.6.5 Detection of Diabetes -- 2.6.5.1 Electrochemical Enzymatic Glucose Biosensor -- 2.6.5.2 Nonenzymatic Glucose Biosensors -- 2.6.6 Detection of Cholesterol -- 2.6.6.1 Enzymatic Detection of Cholesterol
2.6.6.2 Enzyme-free Biocatalytic Oxidation of Cholesterol -- 2.6.7 Detection of Hydrogen Peroxide -- 2.6.8 Hydrogen Peroxide Detection in Living Cells -- 2.6.9 Nucleic Acid Biosensors -- 2.6.10 Detection of Enzymes -- 2.6.11 Food Toxin Sensing -- 2.6.12 Heavy Metal Detection -- 2.6.13 Detection of Pesticides -- 2.6.14 Graphene-based Fluorescent Biosensors -- 2.6.15 Detection of Small Molecules -- 2.6.16 Detection of Nucleic Acids -- 2.6.17 Detection of Pathogens and Food Toxins -- 2.6.18 Detection of Toxic Heavy Metal Ions -- References -- Chapter 3 Zinc Oxide Piezoelectric Nanogenerators for Low-frequency Applications -- 3.1 Introduction of Zinc Oxide -- 3.1.1 Structure of ZnO NPs -- 3.1.2 Crystal Structure of ZnO NPs -- 3.1.3 Methods for Synthesis of ZnO NPs -- 3.1.3.1 Mechanochemical Methods -- 3.1.3.2 Sol-gel Synthesis -- 3.1.3.3 Hydrothermal Method -- 3.1.3.4 Liquid-phase Synthesis -- 3.1.3.5 Controlled Precipitation -- 3.1.3.6 Vapor Transport Synthesis -- 3.1.4 Piezoelectric Effect of ZnO -- 3.2 Zinc Oxide Piezoelectric Nanogenerators -- 3.2.1 Nanogenerators -- 3.2.1.1 Piezoelectric Nanogenerators (PENGs) -- 3.2.1.2 Triboelectric Nanogenerators (TENGs) -- 3.2.1.3 Pyroelectric Nanogenerators -- 3.2.1.4 Hybrid Nanogenerators -- 3.2.2 Zinc Oxide Piezoelectric Nanogenerators -- 3.3 Zinc Oxide Piezoelectric Nanogenerators for Low-frequency Applications -- 3.3.1 Approaches for Scavenging Low-frequency Vibrations -- 3.3.2 Device Structures -- 3.3.2.1 Arc Shaped -- 3.3.2.2 Cantilever -- Conclusion -- References -- Chapter 4 Investigation of Hot Carrier-induced Degradation in Nanoscale Junctionless MOSFETs: A Reliability-based Analysis -- 4.1 Introduction -- 4.2 Overview of the Junctionless Paradigm -- 4.3 Simulation Framework of Hot Carrier Degradation -- 4.4 Creation of Interface Traps -- 4.5 Performance Degradation Due to Hot Carrier Effect
4.6 Hot Carrier Degradation in Digital Applications -- 4.6.1 Static Analysis -- 4.6.2 Transient Analysis -- 4.7 Concluding Remarks -- References -- Chapter 5 Study of Electrostatic and Dispersion Forces in Nanoelectromechanical Systems (NEMS) -- 5.1 Introduction -- 5.2 Electrostatic Forces -- 5.2.1 Rectangular Beam-Plate -- 5.2.2 Wire-Plate -- 5.2.3 Carbon Nanotube (CNT) Sheets -- 5.2.4 Rectangular Tweezers -- 5.2.5 Carbon Nanotube (CNT) Tweezers -- 5.3 Fringing Field Effects -- 5.3.1 Palmer's Model -- 5.3.2 Mejis-Fokkema Model -- 5.3.3 Other Models -- 5.4 Van der Waals Force -- 5.5 Rectangular Beam-Sheets -- 5.5.1 Wire-Plate -- 5.5.2 Carbon Nanotube (CNT) Sheets -- 5.5.3 Rectangular Tweezers -- 5.5.4 Circular Tweezers -- 5.5.5 Carbon Nanotube (CNT) Tweezers -- 5.6 Casimir Force -- 5.6.1 Rectangular Beam-Plate -- 5.6.2 Wire-Plate -- 5.6.3 Carbon Nanotube (CNT) Sheets -- 5.6.4 Rectangular Tweezers -- 5.6.5 Circular Tweezers -- 5.6.6 Carbon Nanotube (CNT) Tweezers -- 5.7 Other Theories Related to the Casimir Force -- 5.7.1 Proximity Force Approximation (PFA) -- 5.7.2 Dirichlet and Neumann Modes -- 5.8 Freestanding Phenomenon -- 5.8.1 Detachment Length -- 5.8.2 Surface Layer and Size-dependent Effects -- 5.9 Summary -- References -- Chapter 6 Nanomaterials for Wearable, Flexible, and Stretchable Strain/Pressure Sensors -- 6.1 Introduction -- 6.2 Wearable Strain/Pressure Sensors -- 6.2.1 Piezoresistive Sensors -- 6.2.2 Capacitive Sensor -- 6.2.3 Piezoelectric Sensors -- 6.2.4 Triboelectric Sensors -- 6.3 Applications -- 6.3.1 Movement Monitoring and Daily Performance Tracking -- 6.3.2 Health Monitoring -- 6.3.3 Human-machine Interface, Soft Robotics, and Artificial Skin -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Conductive Nanomaterials for Printed and Flexible Electronics Application -- 7.1 Introduction
7.2 Printing Technology and Challenges with Fabrication of Electronics -- 7.2.1 Inkjet Printing -- 7.2.2 Screen Printing -- 7.2.3 Slot Die Coating -- 7.2.4 Electrohydrodynamic (EHD) Printing -- 7.2.5 Gravure Printing -- 7.2.6 Flexographic Printing -- 7.2.7 Roll-to-roll (R2R) Printing -- 7.2.8 Printable Nanomaterials Requirements -- 7.3 Synthesis and Preparation of Nanomaterial-based Inks -- 7.3.1 Metallic-based Inks -- 7.3.1.1 Silver Nanoparticles -- 7.3.1.2 Silver Nanowires -- 7.3.2 1D and 2D Material-based Inks -- 7.3.2.1 CNT Ink -- 7.3.2.2 Graphene Ink -- 7.4 Outlooks and Perspectives -- References -- Chapter 8 Metal-oxide Semiconductors for Noninvasive Diagnosis of Breast Cancer -- 8.1 Introduction -- 8.2 Sensing Material and Techniques -- 8.3 Biomarkers for Noninvasive Diagnosis of Breast Cancer -- 8.3.1 Body Metabolism for VOC Generation -- 8.3.2 Various Components of Human Breath and Its Related Diseases -- 8.3.3 Breast Cancer-related VOCs -- 8.4 Sensing Elements -- 8.4.1 Various Materials for VOC Sensing -- 8.4.2 Metal Oxides for VOC Sensing -- 8.4.3 Significance of Composite Metal Oxides -- 8.5 Fabrication Methods -- 8.5.1 Thin Film Deposition -- 8.5.1.1 Vacuum-based Techniques -- 8.5.1.2 Chemical Routes -- 8.5.2 Thick Film Deposition -- 8.5.3 Growth of Nanomaterials -- 8.5.3.1 Physical Methods -- 8.5.3.2 Chemical Methods -- 8.6 Noninvasive Techniques for Breast Cancer Diagnosis -- 8.6.1 Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) -- 8.6.2 Proton Transfer Reaction Mass Spectrometry (PTR-MS) -- 8.6.3 Gas Chromatography-Mass Spectrometry (GC-MS) -- 8.6.4 Differential Mobility Spectrometer (DMS) -- 8.6.5 Chemiresistive Sensing Mechanism -- 8.6.6 Fiber-optic Sensors -- 8.6.6.1 Evanescent Wave Fiber-optic VOC Sensors -- 8.6.6.2 Lossy Mode Resonance Fiber-optic VOC Sensors -- 8.6.7 Surface Plasmon Resonance Sensor
8.6.8 Calorimetric Sensors -- 8.7 Conclusion -- Acknowledgements -- References -- Chapter 9 Down-conversion Photoluminescence Properties of ZrO2 : Ln3+ (Ln & -- equals -- Eu, Sm, Er, Tb, Ho, Tm, Pr, Gd, Dy) Films Formed by Plasma Electrolytic Oxidation -- 9.1 Introduction -- 9.2 Experiment -- 9.3 Results and Discussion -- 9.3.1 Morphology, Chemical, and Phase Composition -- 9.3.2 PL of ZrO2 Films -- 9.3.2.1 PL of Undoped ZrO2 -- 9.3.2.2 PL of ZrO2 : Eu3+ -- 9.3.2.3 PL of ZrO2 : Sm3+ -- 9.3.2.4 PL of ZrO2 : Er3+ -- 9.3.2.5 PL of ZrO2 : Tb3+ -- 9.3.2.6 PL of ZrO2 : Ho3+ -- 9.3.2.7 PL of ZrO2 : Tm3+ -- 9.3.2.8 PL of ZrO2 : Pr3+ -- 9.3.2.9 PL of ZrO2 : Gd3+ -- 9.3.2.10 PL of ZrO2 : Dy3+ -- 9.4 CIE Chromaticity of ZrO2 : Ln3+ -- 9.5 Conclusion -- Acknowledgments -- References -- Chapter 10 Multiferroics for Spintronic Applications -- 10.1 Magnetoelectric Multiferroic Materials -- 10.2 Spintronics -- 10.2.1 Fundamental Aspects of Spintronics -- 10.2.2 Giant Magnetoresistance -- 10.2.3 Tunneling Magnetoresistance -- 10.3 Spintronic Devices -- 10.3.1 Spin Valve -- 10.3.2 Multiferroic Tunnel Junctions -- 10.3.3 Spin FET -- 10.3.4 Spin LED -- 10.4 Summary -- References -- Chapter 11 Quartz Tuning Fork-Based Nanosensors -- 11.1 Introduction -- 11.2 Chemical Sensors -- 11.3 Quartz Tuning Forks (QTFs) -- 11.4 Early QTF Development -- 11.5 QTF as a Sensor -- 11.5.1 Mass-loaded QTFs as Sensors -- 11.5.2 Polymer Wire/Film Modified QTF Sensor -- 11.5.2.1 QTFs Modified with Polymer Wire Bridges -- 11.5.2.2 QTFs Modified with Polymer Film Bridges -- 11.5.2.3 Improving Selectivity of Polymer-modified QTF Sensors and Classification of VOCs -- 11.6 Conclusions -- References -- Index -- EULA
Notes Description based on publisher supplied metadata and other sources
Form Electronic book
Author Semkin, Artem
Balakrishnan, Raneesh
Lazovic, Sasa
ISBN 3527824227
9783527824229
3527824219
9783527824212
3527824235
9783527824236