Limit search to available items
68 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems / edited by Sabu Thomas [and 4 others]
Published Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge, MA : Elsevier, [2022]

Copies

Description 1 online resource
Series Micro and Nano Technologies
Micro & nano technologies.
Contents Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Section 1 -- Fundamentals -- 1 -- Miniaturization-An introduction to miniaturized analytical devices -- 1.1 Introduction -- 1.2 Miniaturization in analytical chemistry -- 1.2.1 Miniaturization of sample preparation step -- 1.2.1.1 Microextraction -- 1.2.1.2 Microfluidics -- 1.2.2 Miniaturization of separation step -- 1.2.3 Miniaturization of detection methods -- 1.2.3.1 Electrochemical detection -- 1.2.3.2 Optical detection -- 1.3 Conclusions -- References -- 2 -- Spectrometric miniaturized instruments -- 2.1 Introduction -- 2.2 Portable spectrometric miniaturized instrument (PSMI) -- 2.2.1 PSMI spectrophotometers -- 2.2.1.1 UV-Vis and UV-Vis-NIR spectrophotometers -- 2.2.1.2 IR spectrophotometer -- 2.2.2 PSMI spectrometers -- 2.2.2.1 Fluorescence spectrometers -- 2.2.2.2 Raman spectrometers -- 2.2.2.3 Elemental spectrometers -- 2.2.2.4 NMR spectrometers -- 2.2.2.5 Mass spectrometers -- 2.3 Smartphone-enabled spectrometric miniaturized instruments -- 2.3.1 Colorimetric SESMIs -- 2.3.2 Photoluminescent SESMIs -- 2.3.3 Biochemiluminescent SESMIs -- 2.4 Conclusions -- References -- 3 -- Separation miniaturized instruments -- 3.1 Introduction -- 3.2 Gas chromatography -- 3.3 High pressure/performance liquid chromatography -- 3.4 Capillary electrophoresis -- 3.5 Ion chromatography -- 3.6 Hyphenated separation instruments -- 3.7 Conclusions -- References -- 4 -- Fabrication methods of miniaturized analysis -- 4.1 Introduction -- 4.2 Types of miniaturized analysis system -- 4.3 Fabrication methods of paper-based miniaturized analysis system -- 4.4 Fabrication of polymer-based miniaturized analysis system -- 4.5 Fabrication methods of glass-based miniaturized analysis system
4.6 Fabrication methods of silicon-based miniaturized analysis system -- 4.7 Challenges and strategies to improve sensitivity, accuracy, multiplexed detection, and calibration free allowing for m ... -- 4.8 Conclusion and future perspectives -- Acknowledgment -- References -- 5 -- Miniaturized bioelectrochemical devices -- 5.1 Introduction -- 5.2 Portable bioelectrochemical devices design -- 5.2.1 Principles of potentiostats -- 5.2.2 Power supply -- 5.2.2.1 General power supply devices -- 5.2.2.2 Power supply from body harvesting -- 5.2.2.3 Current readout circuitry -- 5.2.3 Cell configurations -- 5.2.4 Communications -- 5.2.5 A practical example of PBDs -- 5.3 Lab-on-a-chip PBDs devices -- 5.3.1 Implantable PBDs -- 5.3.1.1 Power supply for implantable PBDs -- 5.3.1.2 Communication in implantable PBDs -- 5.3.1.3 Microfluidics in implantable PBDs -- 5.3.1.4 Design considerations of implantable PBDs -- 5.3.2 Wearable PBDs -- 5.3.2.1 Classification of wearable PBDs -- 5.3.2.2 Design considerations of wearable PBDs -- 5.4 Conclusions -- References -- 6 -- Electrochemical miniaturized devices -- 6.1 Overview -- 6.1.1 Form factors, application constraints and driving forces -- 6.1.2 Chemical (bio)sensors -- 6.1.3 State of the art -- 6.1.4 Beyond the state of the art -- 6.2 Fundamentals of electrochemical (bio)sensors -- 6.2.1 Electrochemical techniques -- 6.2.1.1 Potentiometry -- 6.2.1.2 Chronoamperometry -- 6.2.1.3 Voltammetry -- 6.2.1.4 Electrochemical impedance spectroscopy -- 6.2.2 Analytes of interest -- 6.2.3 Sensor technologies and fabrication -- 6.3 Instrumentation electronics -- 6.3.1 Integration technologies overview -- 6.3.2 Custom integrated circuits for electrochemical instrumentation -- 6.3.3 Flexible electronics -- References -- 7 -- Separation technologies in microfluidics -- 7.1 Introduction
7.2 Chemical separations -- 7.3 Particle separations -- 7.3.1 Passive particle separation systems -- 7.3.2 Active particle separation systems -- 7.3.3 Hybrid separation systems -- 7.4 Discussion and conclusion -- References -- 8 -- Portable microplanar extraction, separation, and quantification devices for bioanalytical and environmental engineerin ... -- 8.1 Occurrence and quantification of priority substances in water ecosystems-the problem overview based on the European Un ... -- 8.2 Advances in development of portable microdevices for detection of various pollutants in water, sewage, and complex bio ... -- 8.3 Development of portable extraction devices, planar electrophoresis, and microplanar thin-layer chromatography for isol ... -- Authors contributions and additional statements -- References -- 9 -- Approaches to microholes for fabrication of microdevices -- 9.1 Introduction -- 9.2 Methods for tool wear improvement -- 9.2.1 CNTs/graphene -- 9.3 Patterning -- 9.4 Embedding -- 9.5 In situ CNT growth -- 9.6 Microhole applications -- 9.7 Conclusions -- References -- 10 -- Photonic crystal-based optical devices for photonic intergraded circuits -- 10.1 Introduction -- 10.2 History of photonic crystals -- 10.3 Types of photonic crystals -- 10.3.1 One-dimensional PCs -- 10.3.2 Two-dimensional PCs -- 10.3.2.1 Band diagram -- 10.3.2.2 TE and TM modes -- 10.3.2.3 Gapmaps -- 10.3.2.4 Defects in a 2D photonic crystal lattice -- 10.3.3 Three-dimensional PCs -- 10.3.3.1 Diamond structure -- 10.3.3.2 Yablonovite structure -- 10.3.3.3 Woodpile structure -- 10.3.3.4 Inverse opal structure -- 10.3.3.5 FCC structure -- 10.3.3.6 Square spiral structure -- 10.3.3.7 Scaffolding structure -- 10.3.3.8 Tunable 3D inverse opal structure -- 10.4 Numerical methods -- 10.4.1 PWE method -- 10.4.2 FDTD method
10.5 Functional parameters -- 10.5.1 Quality factor ( Q ) -- 10.5.2 Sensitivity ( S ) -- 10.5.3 Resolution ( R ) -- 10.5.4 Detection limit ( D ) -- 10.5.5 Figure of merit (FOM) -- 10.5.6 Transmission efficiency ( ƞ ) -- 10.5.7 Dynamic range (DR) -- 10.5.8 Extinction ratio or contrast ratio -- 10.5.9 Insertion loss and propagation loss -- 10.5.10 Crosstalk -- 10.5.11 Response time and bit rate -- 10.6 Photonic crystal-based demultiplexer -- 10.6.1 Four-channel hybrid DWDM demultiplexer -- 10.6.2 Eight-channel hybrid DWDM demultiplexer -- 10.6.3 DWDM demultiplexer -- 10.7 Applications of 2DPCs -- 10.7.1 Lasers -- 10.7.2 Multiplexer -- 10.7.3 Demultiplexer -- 10.7.4 Waveguide -- 10.7.5 Filters -- 10.7.6 Waveguide splitter -- 10.7.7 Optical sensors -- 10.7.8 Photonic crystal fiber -- 10.7.9 Logic gates -- 10.7.10 Circulators -- 10.8 Conclusion -- References -- Section 2 -- Applications of mobile devices in miniaturized analysis -- 11 -- Lab-on-a-chip miniaturized analytical devices -- 11.1 Introduction -- 11.2 Lab-on-a-chip devices for clinical diagnostics -- 11.3 Lab-on-a-chip devices for integrated bioanalysis -- 11.3.1 Integrated continuous-flow biosensors -- 11.3.2 Droplet-based microfluidic biosensors -- 11.3.3 Digital microfluidic-based biosensors -- 11.4 Lab-on-a-chip devices for environmental monitoring -- 11.5 Lab-on-a-chip devices for quality control -- 11.5.1 Quality control in food science -- 11.5.2 Quality control in pharmaceutical science -- 11.6 Point-of-care applications -- 11.7 Conclusions -- References -- 12 -- Smartphone-enabled miniaturized analytical devices -- 12.1 Introduction -- 12.2 Colorimetric applications -- 12.3 Photoluminescent applications -- 12.4 Biochemiluminescent applications -- 12.5 Electrochemical applications -- 12.6 Point-of-care applications
12.6.1 Colorimetric chemical-based detection -- 12.6.2 Fluorescence-based detection -- 12.6.3 Electrochemical-based detection -- 12.7 Implantable sensors -- 12.8 Wearable sensors -- 12.9 Future perspectives -- References -- 13 -- Smartphone-based chemical sensors and biosensors for biomedical applications -- 13.1 Introduction -- 13.2 Smartphone-based electrochemistry sensors -- 13.2.1 Amperometry sensors -- 13.2.2 Potentiometry sensors -- 13.2.3 Impedimetry sensors -- 13.3 Smartphone-based spectroscopy sensors -- 13.3.1 Electrochemiluminescence sensors -- 13.3.2 Local surface plasmon resonance sensors -- 13.3.3 Other optical sensors -- 13.4 Smartphone-based wearable sensors for biomedical applications -- 13.4.1 Epidermal sensors -- 13.4.2 Respiration sensors -- 13.4.3 Other wearable sensors -- 13.5 Conclusion and future prospect -- Acknowledgment -- References -- 14 -- Biomedical applications of mobile devices in miniaturized analysis -- 14.1 Introduction -- 14.1.1 Features of miniaturization -- 14.2 Miniaturized analytical systems for qualitative information -- 14.2.1 Miniaturized system for clinical sorting and diagnosis -- 14.2.1.1 Miniaturized system for clinical sorting -- 14.2.1.2 Miniaturized system for diagnostic imaging -- 14.2.1.3 Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system -- 14.3 Smartphone-enabled miniaturized biosensing systems -- 14.3.1 Colorimetric sensors -- 14.3.2 Fluorescence sensors -- 14.3.3 Luminescence sensors -- 14.3.4 Electrochemical biosensors -- 14.4 Commercialized miniaturized biosensors -- 14.4.1 Pressure sensors/meters -- 14.4.2 Digital multimeters -- 14.4.3 Electronic balance -- 14.4.4 Thermometers -- 14.4.5 pH meters -- 14.4.6 Glucose meters -- 14.5 Conclusions and perspectives -- References -- 15 -- Lab-on-a-chip analytical devices -- 15.1 Introduction
Summary Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents
Notes Online resource; title from digital title page (viewed on November 02, 2021)
Subject Analytical chemistry.
Miniature electronic equipment.
Nanotechnology.
chemical analysis.
Analytical chemistry
Miniature electronic equipment
Nanotechnology
Form Electronic book
Author Thomas, Sabu, editor
ISBN 9780128237281
0128237287
9780128237274
0128237279