Limit search to available items
36 results found. Sorted by relevance | date | title .
Book Cover
E-book
Author Glicksman, M. E.

Title Principles of solidification : an introduction to modern casting and crystal growth concepts / Martin Eden Glicksman
Published New York : Springer, [2011]
©2011
Online access available from:
Springer eBooks    View Resource Record  

Copies

Description 1 online resource (xviii, 520 pages) : illustrations
Contents Note continued: 4.1.1. Introduction -- 4.1.2. Analysis of 1-Dimensional Freezing -- 4.1.3. Quasi-static Results -- 4.1.4. Solidification of a Circular Cylinder -- 4.2. Moving Boundary Analysis -- 4.2.1. Introduction -- 4.2.2. Conduction-Advection -- 4.2.3. Neumann's Solution: Semi-infinite Freezing -- 4.3. Summary -- References -- pt. II Macrosegregation -- 5. Solute Mass Balances: Macrosegregation -- 5.1. Local and Global Interfacial Equilibrium -- 5.1.1. Introduction -- 5.1.2. Distribution Coefficient, k0 -- 5.2. Solute Rejection at the Solid-Liquid Interface -- 5.2.1. Interfacial Solute Balance -- 5.3. Gulliver-Scheil Macrosegregation Theory -- 5.3.1. Determination of the Distribution Coefficient -- 5.4. Macrosegregation with Solid-State Diffusion -- 5.4.1. Solid-State Diffusion -- 5.4.2. Mass Balances with Solid-State Diffusion -- 5.4.3. Time Dependence of Fraction Solidified -- 5.4.4. Solutal Fourier Number -- 5.5. Limits of the Brody-Flemings Solute Balance -- 5.6. Binary Alloy Segregation Curves -- 5.6.1. Gulliver-Scheil Segregation: Solubility Limits -- 5.6.2. Influence of the Fourier Number -- 5.7. Purification via Freezing -- 5.7.1. Fractional Crystallization -- 5.7.2. Chemical Purity -- 5.7.3. Why Pure Materials? -- 5.7.4. Cyclic Unidirectional Solidification -- 5.8. Zone Refining -- 5.8.1. Single Zone Pass: Pfann's Equation -- 5.8.2. Multipass Zone Refining -- 5.9. Summary -- References -- 6. Plane-Front Solidification -- 6.1. Introduction -- 6.1.1. Steady-State Macrosegregation -- 6.1.2. Steady-State Plane-Front Freezing -- 6.1.3. Solute Boundary Layers -- 6.2. Transient Macrosegregation -- 6.2.1. Initial Transients in Infinite Systems -- 6.2.2. Transients in Finite Systems -- 6.2.3. Final Segregation Transient -- 6.3. Numerical Studies in Finite Systems -- 6.4. Summary -- References
Note continued: 7. Composition Control -- 7.1. Convection in Freezing Melts -- 7.1.1. Mixing Limits -- 7.1.2. BPS Model -- 7.1.3. Solution to the BPS Transport Equations -- 7.2. Effective Distribution Coefficients -- 7.2.1. Definition and Role of Effective Distribution Coefficients -- 7.2.2. Results from BPS Theory -- 7.3. Summary -- References -- pt. III Solid-Liquid Interfaces: Capillarity, Stability, Nucleation -- 8. Crystal-Melt Interfaces -- 8.1. Capillarity -- 8.1.1. Background -- 8.2. Planar and Curved Interfaces -- 8.2.1. Surface Patches -- 8.2.2. Curvatures -- 8.2.3. Kinematics of Interfacial Deformation -- 8.2.4. Interfaces -- 8.2.5. Interfacial Energy -- 8.3. Gibbs-Thomson Effect -- 8.3.1. Equilibrium at Curved Interfaces -- 8.3.2. Chemical Potentials at Curved Interfaces -- 8.3.3. Interfacial Shapes -- 8.3.4. Kelvin's Equation -- 8.4. Summary -- References -- 9. Constitutional Supercooling -- 9.1. Introductory Remarks -- 9.2. Background -- 9.3. Decanting Studies -- 9.3.1. Interfacial Instabilities in Single Crystals -- 9.3.2. Interfacial Instabilities in Polycrystals -- 9.4. Constitutional Supercooling -- 9.4.1. Introduction -- 9.4.2. Interfacial Solute Mass Balance -- 9.4.3. Constitutional Gradient -- 9.4.4. Stable Interfaces -- 9.4.5. Unstable Interfaces -- 9.4.6. Marginal Stability -- 9.4.7. Bulk Crystal Growth: Limiting Forms for Stability -- 9.5. Verification of Constitutional Supercooling -- 9.5.1. Experiments -- 9.6. Summary -- References -- 10. Linear Morphological Stability -- 10.1. Introduction -- 10.2. Perturbation Theory -- 10.2.1. Stability of Planar Interfaces -- 10.3. Steady-State Plane-Front Freezing -- 10.3.1. Boundary Conditions -- 10.3.2. Transport Field Equations -- 10.3.3. Perturbation Analysis: The Concept -- 10.3.4. Transport Solutions
Note continued: 10.3.5. Local Interfacial Equilibrium -- 10.3.6. Linearization of the Curvature -- 10.3.7. Interfacial Flux Balances -- 10.3.8. Solutions to the Field Equations -- 10.4. Stability Criteria -- 10.4.1. Amplitude Evolution -- 10.4.2. Criteria for Interfacial Stability -- 10.4.3. Marginal Stability -- 10.5. Low Wavenumber Limit -- 10.6. General Stability Analysis -- 10.6.1. Marginal Wavenumber -- 10.7. Experimental Validation -- 10.8. Absolute Stability -- 10.9. Summary -- References -- 11. Non-linear Stability Models -- 11.1. Limitations of Linear Stability -- 11.2. Interfacial Patterns Just Beyond Marginal Stability -- 11.3. Patterns Further from the Margin of Stability -- 11.4. Morphological Stability Maps -- 11.5. Absolute Stability in the Non-linear Regime -- 11.6. Plan-Forms of Instabilities -- 11.7. Summary -- References -- 12. Nucleation Catalysis -- 12.1. Introduction -- 12.2. Fluctuation-Dissipation -- 12.3. Heterogeneous Equilibrium -- 12.3.1. Free Energy Changes for Nucleation -- 12.4. Homogeneous Nucleation -- 12.4.1. Free Energy Barrier -- 12.5. Heterogeneous Nucleation -- 12.5.1. Background -- 12.5.2. Spherical Cap Model -- 12.5.3. Heterophase Fluctuations on a Substrate -- 12.6. Grain Refinement -- 12.6.1. Inoculants -- 12.6.2. Substrate Area, Contact Angle, and Phase Spreading -- 12.6.3. Accommodation Strains -- 12.6.4. Athermal Heterogeneous Nucleation -- 12.6.5. Melt Flow Control and Cavitation -- 12.7. Summary -- References -- pt. IV Microstructure Evolution -- 13. Dendritic Growth -- 13.1. Introduction -- 13.1.1. Some Early History -- 13.2. Dendrites in Metals Processing -- 13.2.1. Observations and Simulation of Dendritic Growth -- 13.2.2. Initiation of Dendritic Growth -- 13.2.3. Directional Solidification -- 13.3. Dendrites in Castings
Note continued: 13.4. Dendritic Growth Theory -- 13.4.1. Ivantsov's Transport Model -- 13.4.2. Ivantsov's Transport Solution -- 13.5. Dendritic Boundary Layers -- 13.5.1. Boundary Layer Thickness -- 13.5.2. Boundary Layers at Small Peclet Numbers -- 13.5.3. Boundary Layers at Large Peclet Numbers -- 13.6. Dendritic Capillarity -- 13.7. Marginal Stability Hypothesis -- 13.7.1. Estimating v and Rtip -- 13.8. Dendritic Growth Experiments -- 13.8.1. Velocity Experiments -- 13.8.2. Gravitational Effects -- 13.8.3. Stability Constants for Dendritic Growth -- 13.9. Stochastics and Determinism -- 13.9.1. Background -- 13.9.2. Anisotropic Capillarity -- 13.9.3. Energy Anisotropy -- 13.9.4. Shape Anisotropy -- 13.9.5. Deterministic Dynamics: Two Dimensions -- 13.9.6. Deterministic Dynamics: Three Dimensions -- 13.10. Summary -- References -- 14. Microsegregation -- 14.1. Introduction -- 14.2. Cellular Microsegregation -- 14.2.1. Key Assumptions -- 14.2.2. Intercellular Solute Mass Balance -- 14.3. Dendritic Microsegregation -- 14.3.1. Microsegregation in Mushy Zones -- 14.4. Influence of Solid-State Diffusion -- 14.4.1. Solute Mass Balances in Mushy Zones -- 14.5. Structure of Castings -- 14.6. Summary -- References -- 15. Interface Structure and Growth Kinetics -- 15.1. Introduction -- 15.1.1. Faceted Interfaces -- 15.1.2. Non-faceted Interfaces -- 15.2. Two-Layer Interface Model -- 15.2.1. Background -- 15.2.2. Energy Changes for Interfacial Configurations -- 15.3. Kinetic Theories -- 15.3.1. Atomically Rough Interfaces -- 15.3.2. Molecularly Smooth Interfaces -- 15.4. Kinetic Roughening -- 15.4.1. Introduction -- 15.4.2. Interface Diffuseness -- 15.4.3. Roughening Transition -- 15.4.4. Experiments -- 15.5. Summary -- References -- 16. Polyphase Solidification -- 16.1. Introduction
Note continued: 16.2. Eutectics -- 16.2.1. Thermodynamics: Polyphase Solidification -- 16.2.2. Classification of Eutectics -- 16.2.3. Importance of Eutectics -- 16.2.4. Nucleation of Eutectics -- 16.2.5. Growth of Eutectics -- 16.2.6. Tiller's Theory of Eutectic Growth -- 16.2.7. Eutectic Phase Spacing -- 16.3. Hunt-Jackson Theory of Eutectics -- 16.4. Eutectic Microstructures -- 16.4.1. Lamellar Eutectics -- 16.4.2. Rod Eutectics -- 16.4.3. Lamellar-to-Rod Transition -- 16.4.4. Crystallography of Lamellar Eutectics -- 16.5. Computation of Eutectic Microstructures -- 16.6. Directional Freezing of Polyphase Alloys -- 16.7. Cast Iron -- 16.8. Summary -- References -- 17. Rapid Solidification Processing -- 17.1. Introduction -- 17.2. Background -- 17.2.1. Splat Quenching of Alloys -- 17.3. Early Research in Rapid Solidification -- 17.3.1. Non-equilibrium Phase Diagrams -- 17.3.2. Hypercooling -- 17.3.3. Thermodynamic Limits -- 17.4. Solute Trapping -- 17.4.1. Interface Non-equilibrium -- 17.4.2. Laser Melting -- 17.5. Theory -- 17.5.1. Introduction -- 17.5.2. Continuous Growth Models -- 17.5.3. Response Functions -- 17.5.4. Quantitative RSP Experiments -- 17.6. Summary -- References -- pt. V Appendices -- A. Thermodynamic Functions and Legendre Transforms -- B. Grain Boundary Grooves -- References -- C. Deterministic Simulation of Dendritic Growth -- References -- D. Directional Solidification Techniques -- References -- E. Hunt-Jackson Theory of Eutectics -- References
Summary “Principles of Solidification” offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: Detailed mathematical examples throughout to guide readers Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Solidification.
Form Electronic book
LC no. 2010936894
ISBN 1441973435
1441973443 (electronic bk.)
9781441973436
9781441973443 (electronic bk.)