Description |
1 online resource |
Contents |
Machine generated contents note: 1. Plasmonic-Fluorescent and Magnetic-Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe / Nikhil Ranjan Jana -- 1.1. Introduction -- 1.2. Synthesis Design of Composite Nanoparticle -- 1.2.1. Method 1: Polyacrylate Coating-Based Composite of Nanoparticle and Organic Dye -- 1.2.2. Method 2: Polyacrylate Coating-Based Composite of Two Different Nanoparticles -- 1.2.3. Method 3: Ligand Exchange Approach-Based Composite of Two Different Nanoparticles -- 1.3. Property of Composite Nanoparticles -- 1.3.1. Optical Property -- 1.3.2. Fluorophore Lifetime Study -- 1.4. Functionalization and Labeling Application of Composite Nanoparticle -- 1.5. Conclusion -- 2. Compatibility of Metal-Induced Fluorescence Enhancement with Applications in Analytical Chemistry and Biosensing / Ewa M. Goldys -- 2.1. Introduction -- 2.2. Homogeneous Protein Sensing MIFE Substrates -- 2.2.1. Core -- Shell Approach -- 2.2.2. Homogeneous Large Au Nanoparticle Substrates -- 2.2.3. Commercial Klarite["! Substrate -- 2.3. Ag Fractal Structures -- 2.3.1. Reasons for High Enhancement Factors in Nanowire Structures -- 2.3.2. Ag Dendritic Structure -- Homogeneous Silver Fractal -- 2.4. MIFE with Membranes for Protein Dot Blots -- 2.5. MIFE with Flow Cytometry Beads and Single Particle Imaging -- 3. Plasmonic Enhancement of Molecule-Doped Core-Shell and Nanoshell on Molecular Fluorescence / Mao-Kuen Kuo -- 3.1. Introduction -- 3.2. Theory -- 3.2.1. Plane Wave Interacting with an Multilayered Sphere -- 3.2.2. Excited Dipole Interacting with a Multilayered Sphere -- 3.2.3. EF on Fluorescence -- 3.3. Numerical Results and Discussion -- 3.3.1. Core -- Shell -- 3.3.1.1. Au@SiO2 -- 3.3.1.2. Ag@SiO2 -- 3.3.2. Nanoshelled Nanocavity -- 3.3.2.1. Au NS -- 3.3.2.2. Ag NS -- 3.3.3. NS@SiO2 -- 3.3.3.1. AuNS@SiO2 -- 3.3.3.2. Ag NS@SiO2 -- 3.4. Conclusion -- 4. Controlling Metal-Enhanced Fluorescence Using Bimetallic Nanoparticles / Babu Joseph -- 4.1. Introduction -- 4.2. Experimental Methods -- 4.2.1. Synthesis -- 4.2.1.1. NP Synthesis by Sputtering and Annealing -- 4.2.1.2. Nanoparticle Synthesis by the Polyol Process -- 4.2.2. Particle Characterization -- 4.2.3. Fluorescence Spectroscopy -- 4.2.3.1. On Sputtered and Annealed Ag -- Cu NPs -- 4.2.3.2. On Ag -- Cu NPs Synthesized with the Polyol Process -- 4.3. Theoretical Modeling -- 4.3.1. Modeling SPR Using Mie Theory -- 4.3.2. Modeling of Metal-Enhanced Fluorescence Modified Gersten -- Nitzan Model -- 4.3.3. Modeling MEF Using Finite-Difference Time-Domain (FDTD) Calculations -- 4.4. Conclusion and Future Directions -- 5. Roles of Surface Plasmon Polaritons in Fluorescence Enhancement / H.C. Ong -- 5.1. Introduction -- 5.1.1. Surface Plasmon-Mediated Emission -- 5.1.2. Excitation of Propagating and Localized Surface Plasmon Polaritons in Periodic Metallic Arrays -- 5.1.3. Surface Plasmon-Mediated Emission from Periodic Arrays -- 5.2. Experimental -- 5.2.1. Sample Preparation -- 5.2.2. Optical Characterizations -- 5.3. Result and Discussion -- 5.3.1. Decay Lifetimes of Metallic Hole Arrays -- 5.3.2. Dependence of Decay Lifetime on Hole Size -- 5.3.3. Comparison between Dispersion Relation and PL Mapping -- 5.3.4. Comparison of the Coupling Rate Tb of Different SPP Modes -- 5.3.5. Photoluminescence Dependence on Hole Size -- 5.3.6. Dependence of Fluorescence Decay Lifetime on Hole Size -- 5.4. Conclusions -- 6. Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency / Katrin G. Heinze -- 6.1. Introduction -- 6.2. Background -- 6.3. Theory -- 6.4. Summary -- 7. Metal-Enhanced Fluorescence in Biosensing Applications / Na Li -- 7.1. Introduction -- 7.2. Substrates -- 7.3. Distance Control -- 7.4. Summary and Outlook -- 8. Long-Range Metal-Enhanced Fluorescence / Ofer Kedem -- 8.1. Introduction -- 8.2. Collective Effects in NP Films -- 8.3. Investigations of Metal -- Fluorophore Interactions at Long Separations -- 8.3.1. Distance-Dependent Fluorescence of Tris(bipyridine)ruthenium(II) on Supported Plasmonic Gold NP Ensembles -- 8.3.2. Lifetime -- 8.3.3. Intensity -- 8.3.4. Emission Wavelength and Linewidth -- 8.4. Conclusions -- 9. Evolution, Stabilization, and Tuning of Metal-Enhanced Fluorescence in Aqueous Solution / Tarasankar Pal -- 9.1. Introduction -- 9.1.1. Coinage Metal Nanoparticles in Metal-Enhanced Fluorescence -- 9.2. Metal-Enhanced Fluorescence in Solution Phase -- 9.2.1. Metal-Enhanced Fluorescence from Metal(0) in Solution -- 9.2.1.1. Silver- and Gold-Enhanced Fluorescence -- 9.2.1.2. Selectivity for Silver-Enhanced Fluorescence -- 9.2.1.3. Silver-Enhanced Fluorescence in Diiminic Schiff Bases -- 9.2.1.4. Copper-Enhanced Fluorescence -- 9.2.1.5. Tuning of Metal-Enhanced Fluorescence -- 9.3. Applications of Metal-Enhanced Fluorescence -- 9.3.1. Sensing of Biomolecules -- 9.3.2. Sensing of Toxic Metals -- 9.4. Conclusion -- 10. Distance and Location-Dependent Surface Plasmon Resonance-Enhanced Photoluminescence in Tailored Nanostructures / Dong Ha Kim -- 10.1. Introduction -- 10.2. Effect of SPR in PL -- 10.2.1. Photoluminescence -- 10.2.1.1. Radiative Decay in MEF -- 10.2.1.2. Nonradiative Decay in MEF -- 10.2.2. Enhancement of Emission by SPR -- 10.2.2.1. Resonance Energy Transfer -- 10.2.2.2. NFE Mechanism -- 10.2.3. Quenching of Emission by SPR -- 10.3. Effect of SPR in FRET -- 10.3.1. FRET -- 10.3.2. SPR-Induced Enhanced FRET -- 10.3.3. Effect of the Position, Concentration, and Size of Plasmonic Nanostructures in FRET System -- 10.4. Conclusions and Outlook -- 11. Fluorescence Quenching by Plasmonic Silver Nanoparticles / M. Umadevi -- 11.1. Metal Nanoparticles -- 11.2. Fluorescence Quenching -- 11.3. Mechanism behind Quenching -- 12. AgOx Thin Film for Surface-Enhanced Raman Spectroscopy / Din Ping Tsai -- 12.1. Introduction -- 12.1.1. SERS on the Laser-Treated AgOx Thin Film -- 12.1.1.1. Experimental Method -- 12.1.1.2. Tunabe SERS Enhancement -- 12.1.1.3. SERS-Active Nanostructure Made on Flexible Substrate -- 12.1.2. Annealed AgOx Thin Film for SERS -- 12.2. Conclusion -- 13. Plasmon-Enhanced Two-Photon Excitation Fluorescence and Biomedical Applications / Qing-Hua Xu -- 13.1. Introduction -- 13.2. Metal -- Chromophore Interactions -- 13.3. Plasmon-Enhanced One-Photon Excitation Fluorescence -- 13.4. Plasmon-Enhanced Two-Photon Excitation Fluorescence -- 13.5. Conclusions and Outlook -- 14. Fluorescence Biosensors Utilizing Grating-Assisted Plasmonic Amplification / Jakub Dostalek -- 14.1. Introduction -- 14.2. SPCE in Vicinity to Metallic Surface -- 14.3. SPCE Utilizing SP Waves with Small Losses -- 14.4. Nondiffractive Grating Structures for Angular Control of SPCE -- 14.5. Diffractive Grating Structures for Angular Control of SPCE -- 14.6. Implementation of Grating-Assisted SPCE to Biosensors -- 14.7. Summary -- 15. Surface Plasmon-Coupled Emission: Emerging Paradigms and Challenges for Bioapplication / Yao-Qun Li -- 15.1. Introduction -- 15.2. Properties of SPCE -- 15.3. Current Developments of SPCE in Bioanalysis -- 15.3.1. New Substrates Designing for Biochip -- 15.3.2. Optical Switch for Biosensing -- 15.3.3. Full-Coupling Effect for Bioapplication -- 15.3.4. Hot-Spot Nanostructure-Based Biosensor -- 15.3.5. Imaging Apparatus for High-Throughput Detection -- 15.3.6. Waveguide Mode SPCE to Widen Detection Region -- 15.4. Perspectives -- 16. Plasmon-Enhanced Luminescence with Shell-Isolated Nanoparticles / Ricardo F |
|
Aroca -- 16.1. Introduction -- 16.2. Synthesis of Shell-Isolated Nanoparticles -- 16.2.1. Nanosphere Au-SHINs -- 16.2.2. Nanorod Au-SHINs -- 16.3. Plasmon-Enhanced Luminescence in Liquid Media -- 16.4. Enhanced Luminescence on Solid Surfaces and Spectral Profile Modification -- 16.4.1. SHINEF on Langmuir-Blodgett Films -- 17. Controlled and Enhanced Fluorescence Using Plasmonic Nanocavities / Maiken H. Mikkelsen -- 17.1. Introduction to Plasmonic Nanocavities -- 17.2. Summary of Fabrication -- 17.3. Properties of the Nanocavity -- 17.3.1. Nanocavity Resonances -- 17.3.2. Tuning the Resonance -- 17.3.3. Directional Scattering and Emission -- 17.4. Theory of Emitters Coupled to Nanocavity -- 17.4.1. Simulation of Nanocavity -- 17.4.2. Enhancement in the Spontaneous Emission Rate -- 17.5. Absorption Enhancement -- 17.6. Purcell Enhancement -- 17.7. Ultrafast Spontaneous Emission -- 17.8. Harnessing Multiple Resonances for Fluorescence Enhancement -- 17.9. Conclusions and Outlook -- 18. Plasmonic Enhancement of UV Fluorescence / Steve Blair -- 18.1. Introduction -- 18.2. Plasmonic Enhancement -- 18.3. Analytical Description of PE of Fluorescence -- 18.4. Overview of Research on Plasmon-Enhanced UV Fluorescence -- 18.4.1. Material Selection -- 18.4.2. Structure Choice -- 18.4.3. Experimental Measurement -- 18.4.3.1. Characterization of SPR Properties -- 18.4.3.2. Fluorescence Enhancement -- 18.4.3.3. Lifetime Measurement -- 18.4.3.4. Toward Quantitative Florescence Analysis -- 18.5. Summary |
Bibliography |
Includes bibliographical references and index |
Notes |
Print version record |
Subject |
Fluorescence spectroscopy.
|
|
Fluorescence.
|
|
Plasmons (Physics)
|
|
Surface plasmon resonance.
|
Form |
Electronic book
|
Author |
Geddes, Chris D., editor
|
ISBN |
1119325161 (electronic bk.) |
|
1119325897 (electronic bk.) |
|
9781119325161 (electronic bk.) |
|
9781119325895 (electronic bk.) |
|
(epub) |
|