Limit search to available items
163 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Remediation of heavy metals : sustainable technologies and recent advances / edited by Rangabhashiyam Selvasembian, Binota Thokchom, Pardeep Singh, Ali H. Jawad, Willis Gwenzi
Published Hoboken, NJ : Wiley, 2024

Copies

Description 1 online resource (320 pages)
Contents 1 Release, Detection, and Toxicology of Heavy Metals: A Review of the Main Techniques and Their Limitations in Environmental Remediation 1 Dison S. P. Franco, Jordana Georgin, and Chandrasekaran Ramprasad -- 1.1 Introduction to Heavy Metals: An Overview -- 1.2 Industrial Application of Different Metal Ions -- 1.3 Conclusion -- References -- 2 Heavy Metals Contamination in Environment 15 Deeksha Aithani and Jyoti Kushawaha -- 2.1 Introduction -- 2.2 Heavy Metals in Water -- 2.3 Heavy Metals in Soil -- 2.4 Heavy Metals in Biota -- 2.5 Heavy Metals in Air -- 2.6 Conclusion -- References -- 3 A Brief Study of the Effects of Heavy Metals and Metalloids on Food Crops 31 Ngangbam R. Devi -- 3.1 Introduction -- 3.2 Sources of Heavy Metals in Soils and Food Crops -- 3.3 Impacts on Soil-Plants/Food Crops -- 3.3.1 Metal Ions Transportation in Plants -- 3.4 Heavy Metals and Soil Microbes -- 3.5 Effect of Chromium (Cr) on Plants -- 3.6 Effect of Lead (Pb) on Plants -- 3.7 Effect of Arsenic (As) on Plants -- 3.8 Effect of Cadmium (Cd) on Plants -- 3.9 Effect of Mercury (Hg) on Plants -- 3.10 Effect of Nickel (Ni) on Plants -- 3.11 Future Perspectives -- 3.12 Conclusion -- References -- 4 Impact of Heavy Metals on Human Health 47 Retwik Parui, Geetmani S. Nongthombam, Maimur Hossain, Laxmi R. Adil, Rajdikshit Gogoi, Soumalya Bhowmik, Debika Barman, and Parameswar K. Iyer -- 4.1 Introduction -- 4.2 Mercury -- 4.2.1 Source and Entry of Mercury Metal into Our Body -- 4.2.2 Biological Impact of Mercury Metal -- 4.2.2.1 Sulfhydryl Affinity -- 4.2.2.2 ROS Generation Ability -- 4.2.2.3 Nephrotoxicity -- 4.2.2.4 Neurotoxicity -- 4.2.2.5 Cardiotoxicity -- 4.2.3 Detection and Remedial Techniques for Mercury Metals -- 4.3 Arsenic -- 4.3.1 Source and Entry of Arsenic Metal into Our Body -- 4.3.2 Biological Impact of Arsenic Metal -- 4.3.3 Detection and Remedial Techniques for Arsenic Metals -- 4.4 Iron -- 4.4.1 Source and Entry of Iron Metal into Our Body -- 4.4.2 Biological Impact of Iron Metal -- 4.4.3 Detection and Remedial Techniques for Arsenic Metals -- 4.5 Manganese -- 4.5.1 Source and Entry of Manganese Metal into Our Body -- 4.5.2 Biological Impact of Manganese Metal -- 4.5.3 Detection and Remedial Techniques for Manganese Metals -- 4.6 Zinc -- 4.6.1 Source and Entry of Zinc Metal into Our Body -- 4.6.2 Biological Impact of Zinc Metal -- 4.6.3 Detection and Remedial Techniques for Zinc Metals -- 4.7 Lead -- 4.7.1 Sources and Exposure of Lead Metal -- 4.7.2 Health and Biological Impact of Lead -- 4.7.3 Detection and Control of Lead Exposure -- 4.8 Chromium -- 4.8.1 Sources and Exposure of Chromium -- 4.8.2 Health and Biological Impact of Chromium -- 4.8.3 Safety Limits and Control -- 4.9 Copper -- 4.9.1 Source and Entry of Copper Metal into Our Body -- 4.9.2 Utility and Biological Impact of Copper -- 4.9.3 Detection and Remedial Techniques of Copper -- 4.10 Cadmium -- 4.10.1 Source and Entry of Cadmium Metal into Our Body -- 4.10.2 Toxicology of Cadmium Poisoning -- 4.10.3 Detection and Remedial Techniques of Cadmium -- 4.11 Nickel -- 4.11.1 Source and Entry of Nickel Metal into Our Body -- 4.11.2 Toxicology of Nickel Poisoning -- 4.11.3 Remedial Techniques -- 4.12 Radioactive Heavy Metals -- 4.12.1 Source of Radioactive Heavy Metals -- 4.12.2 Utility and Biological Impact of Radioactive Metal on Health -- 4.12.3 Detection and Remedial Techniques -- 4.13 Conclusion -- References -- 5 Different Approaches for Detecting Heavy Metal Ions 83 Ziaul Hasan, Arif Jamal, and Tauseef Hassan -- 5.1 Introduction -- 5.2 Detection -- 5.3 Methods of Detection -- 5.3.1 Spectroscopic Detection -- 5.3.1.1 Atomic Absorption Spectrometry -- 5.3.1.2 Graphite Furnace Atomic Absorption Spectrometry -- 5.3.1.3 Atomic Fluorescence Spectrometry -- 5.3.1.4 X-Ray Fluorescence Spectrometry -- 5.3.2 Electrochemical Methods of Detection -- 5.3.2.1 Potentiometry -- 5.3.2.2 Amperometry -- 5.3.2.3 Voltammetry -- 5.3.2.4 Galvanostatic Techniques -- 5.3.3 Optical Methods of Detection -- 5.3.3.1 Indicator Dye-Based Sensors -- 5.3.3.2 Ionophore-Based Sensors -- 5.3.3.3 Review on Optical Sensors -- 5.4 Conclusion -- References -- 6 Remediation of Heavy Metals in Environmental Resources Using Physical Methods 109 C. Arun, A. Sethupathy, R.V. Hemavathy, and Chandrasekaran Ramprasad -- 6.1 Introduction -- 6.2 Toxicity of HMs -- 6.3 Physical Methods for Remediation of HMs from Wastewater -- 6.4 Coagulation and Flocculation -- 6.5 Ion Exchange -- 6.6 Adsorption -- 6.7 Membrane Filtration -- 6.8 Conclusion -- References -- 7 Chemical Approaches to Remediate Heavy Metals 123 Ayushi Singhal, Arpana Parihar, Vedika Khare, Gagan Kant Tripathi, and Raju Khan -- 7.1 Introduction -- 7.2 Sources of Heavy Metal -- 7.2.1 Natural Sources -- 7.2.1.1 Rocks -- 7.2.1.2 Soil -- 7.2.1.3 Water -- 7.2.2 Anthropogenic Sources -- 7.2.2.1 Agricultural Activities -- 7.2.2.2 Sewage Effluents -- 7.2.2.3 Bio-Solids -- 7.2.2.4 Industrial Activities -- 7.2.2.5 Mining -- 7.2.2.6 Coal and Petroleum Combustion -- 7.2.2.7 Indoor and Urban Environments -- 7.3 Chemical Remediation Technique for Heavy Metal Contamination in the Environment -- 7.3.1 Chemical Precipitation -- 7.3.1.1 Hydroxide Precipitation -- 7.3.2 Coagulation -- 7.3.3 Ion Exchange -- 7.3.4 Electrochemical Method -- 7.4 Current Challenges and Future Perspectives -- 7.5 Conclusions -- Acknowledgments -- References -- 8 Carbon-Based Absorption Materials for Heavy Metal Removal 149 Ching T. Moi and Ruhima Khan -- 8.1 Introduction -- 8.2 Sources of Heavy Metal in Water -- 8.2.1 Human Health and Heavy Metal Toxicity -- 8.2.2 Toxicity of Mercury -- 8.2.3 Toxicity of Lead -- 8.2.4 Toxicity of Arsenic -- 8.2.5 Toxicity of Chromium -- 8.2.6 Toxicity of Cadmium -- 8.3 Effects of Water Environmental Chemistry on Heavy Metal Removal -- 8.3.1 Temperature -- 8.3.2 pH Value -- 8.3.3 Ionic Strength and Coexisting Ions -- 8.4 Carbon-Based Nanomaterials -- 8.4.1 Graphene and Derivatives -- 8.4.2 Activated Carbon -- 8.4.3 Carbon Nanotubes -- 8.4.4 SWCNTs in the Purification of Heavy Metal-Contaminated Water -- 8.4.5 MWCNTs in the Purification of Heavy Metal-Contaminated Water -- 8.4.6 Fullerenes -- 8.5 Adsorption Mechanisms -- 8.5.1 Physical Adsorption -- 8.5.2 Electrostatic Interaction -- 8.5.3 Ion Exchange -- 8.5.4 Surface Complexation -- 8.5.5 Precipitation/Coprecipitation -- 8.6 Conclusion and Outlook -- References -- 9 Industrial Waste-Derived Materials for Adsorption of Heavy Metals from Polluted Water 169 Rahul Sharma, Pinki R. Agrawal, Chankit, Chanchal, Ittishree, Vinod Kashyap, Ashok K. Sharma, and V. Alagesan -- 9.1 Introduction -- 9.2 Industrial Wastes: Origin, Amount, and Harmful Effects -- 9.3 Sources of Heavy Metal Contamination in Water Sources -- 9.3.1 Natural Sources -- 9.3.2 Anthropogenic Sources -- 9.3.2.1 Environmental and Health Hazards of Heavy Metal Contamination -- 9.3.2.2 Regulatory Legislations and Permissible Limits of Heavy Metals in Water -- 9.3.2.3 Remediation Technologies for Water Pollution -- 9.4 Sequestration of Heavy Metals Using Industrial Waste-Derived Adsorbents -- 9.5 Conclusion -- References -- 10 Biological Remediation of Heavy Metals from Acid Mine Drainage--Recent Advancements 199 Suparna Datta, Keisham Radhapyari, Snigdha Dutta, Rinkumoni Barman, and Anadi Gayen -- 10.1 Introduction -- 10.2 Acid Mine Drainage -- 10.2.1 Overview of Acid Mine Drainage -- 10.2.2 Environmental Effects of Acid Mine Drainage -- 10.2.3 Remediation Options/Technologies -- 10.3 Role of Microorganisms in the Formation and Remediation of AMD -- 10.3.1 Role of Microorganisms in the Formation of Acid Mine Drainage -- 10.3.2 Role of Microorganisms in the Remediation of AMD -- 10.4 Bioremediation of Heavy Metals in AMD -- 10.4.1 Arsenic -- 10.4.1.1 Sulfate-Reducing Bacteria in Arsenic Removal -- 10.4.1.2 Improved Technology for As Removal by SRB -- 10.4.1.3 Novel Sulfur-Reducing Bacteria for Arsenic Removal -- 10.4.1.4 Passive Bioremediation for Arsenic (A Field-Pilot) -- 10.4.1.5 Anaerobic Membrane Bioreactor -- 10.4.1.6 Continuous Flow Bioreactor for Arsenic Removal -- 10.4.2 Copper -- 10.4.2.1 Preventive Methods Relying on Inhibition of Oxidation of Sulfide Minerals -- 10.4.2.2 Bioremediation of Cu Relying on Sulfate Reduction -- 10.4.2.3 Bioremediat
1.2\x ion of Cu Relying on Selective Metal Recovery -- 10.4.2.4 Bioremediation of Cu by Using Microalgae and Fungi -- 10.4.3 Zinc, Cadmium, and Lead -- 10.4.3.1 Bioremediation of Zinc with Sulfate-Reducing Bacterium -- 10.4.3.2 Compost-Based Bioremediation of Zinc and Lead -- 10.4.3.3 Cadmium Bioremediation by Bacterially Assembled Bio Polyester Nanobeads -- 10.4.4 Bioremediation of Manganese and Iron -- 10.4.4.1 Application of Iron- and Manganese-Oxidizing Bacteria (FMOB) -- 10.4.4.2 Compost and Waste Biomaterials -- 10.4.4.3 Application of SRB and Yeast in Bioremediation of AMD -- 10.5 Bottlenecks and Future Prospects -- 10.6 Conclusions -- Abbreviations -- References -- 11 Phytoremediation and Microbe-Assisted Removal of Heavy Metals 247 Sathya Albert Manoharan and Priya Dharshini Veeraragavan -- 11.1 Introduction -- 11.2 Popular Floral Profiles in Phytoremediation -- 11.2.1 Heavy Metal Defense Mechanisms in Plants -- 11.2.1.1 Avoidance -- 11.2.1.2 Tolerance -- 11.2.2 Major Phytoremediation Pipelines by Plants -- 11.2.3 Sequential Process of Phytoimmobilization -- 11.2.4 Phytostabilization -- 11.2.5 Phytoextraction -- 11.2.6 Phytovolatilization -- 11.2.7 Rhizo/Phytofiltration -- 11.3 Assistance of Microorganisms in Phytoremediation -- 11.4 Microbial and Plant Symbiosis in Phytoremediation -- 11.5 Phyto-Microbe Contributory Roles -- 11.6 Conclusion -- References -- 12 Recycling and Disposal of Spent Metal(loid)-Laden Adsorbents: Current and Emerging Technologies, and Future Directions 275 Willis Gwenzi, Jerikias Marumure, Zakio Makuvara, and Tinoziva T. Simbanegavi -- 12.1 Introduction -- 12.2 Nature and Health Concerns/Risks of Spent/Used Adsorbents -- 12.2.1 Nature -- 12.2.1.1 Carbonaceous Adsorbents -- 12.2.1.2 Metal/Metal Oxide and Their Composite Adsorbents -- 12.2.1.3 Metal/Metal Oxide-Organic Composites -- 12.2.1.4 Metal-Organic Frameworks -- 12.2.2 Potential Environmental Health Risks -- 12.3 Current Recycling and Disposal Technologies -- 12.3.1 Regeneration and Recycling as Adsorbents -- 12.3.2 Land/Soil Application -- 12.3.3 Landfilling -- 12.3.4 Cement Stabilization/Solidification -- 12.4 Emerging Technologies -- 12.4.1 Novel Catalysts -- 12.4.2 Novel Construction Materials -- 12.4.3 Solid Fuels -- 12.4.4 Re-Engineered Adsorbents -- 12.4.5 Novel Raw Materials -- 12.5 Looking Ahead: Future Perspectives and Research Directions -- 12.5.1 Opportunities and Challenges -- 12.5.2 Knowledge Gaps and Future Research Directions -- 12.6 Conclusions and Outlook -- Acknowledgments -- References -- Index
Summary Remediation of Heavy Metals Meet the challenge of contaminated water with a range of sustainable tools The treatment of water which has been polluted by heavy metals is an increasingly significant environmental challenge in an industrialized global economy. The ongoing revolution in green technologies, however, has seen a range of sustainable methods emerge for treating water, soils, and other parts of the environment polluted by trace metals. By putting these methods into practice, environmental researchers and industrial professionals can improve water quality, and public health globally. Remediation of Heavy Metals offers a clear, accessible reference on these methods and their applications. It offers an overview of the major effects of heavy metal contamination and works through each of the methods or protocols available to remediate soil and minimize pollution at the source. Remediation of Heavy Metals readers will also find: Comparison of different approaches for heavy metal removal Detailed discussion of physical, chemical, and biological remediation methods Case studies demonstrating proper remediation Remediation of Heavy Metals provides key knowledge for environmental scientists, environmental toxicologists, and other researchers or industrial professionals working in heavy metal removal, as well as advanced graduate students in these areas
Bibliography Includes bibliographical references and index
Subject Sewage -- Purification -- Heavy metals removal.
Heavy metals.
Genre/Form Electronic books
Form Electronic book
Author Selvasembian, Rangabhashiyam, editor.
Thokchom, Binota, editor.
Singh, Pardeep, editor.
Jawad, Ali H. editor
Gwenzi, Willis, editor.
ISBN 9781119853589
1119853583
9781119853565
1119853567