Limit search to available items
68 results found. Sorted by relevance | date | title .
Book Cover
E-book

Title Crop improvement through microbial biotechnology / edited by Ram Prasad, Sarvajeet S. Gill, Narendra Tuteja
Published Cambridge, MA : Elsevier, [2018]
©2018

Copies

Description 1 online resource
Series New and future developments in microbial biotechnology and bioengineering
New and future developments in microbial biotechnology and bioengineering.
Contents Front Cover; New and Future Developments in Microbial Biotechnology and Bioengineering: Crop Improvement through Microbial Biotechnology; Copyright; Contents; Contributors; Chapter 1: The Use of Microorganisms for Gene Transfer and Crop Improvement; 1 Agrobacterium-Based Technologies; 1.1 Gene Transfer Through Agrobacterium Tumefaciens; 1.2 Gene Transfer Through Agrobacterium Rhizogenes; 1.3 Non-Agrobacterium-Based Technologies; 2 Crop Improvement Through Transgenic Technology; 2.1 Herbicide Resistant Transgenic Plants; 2.2 Insect Resistant Transgenic Plants; 2.3 Nutritional Improvement
2.4 Abiotic Stress Tolerance2.5 Engineering for Molecular Farming/Pharming; 3 Virus-Induced Transient Gene Expression in Plants; 3.1 Basic Mechanism of VIGS; 3.2 Methodology Development for VIGS; 3.3 Recent improvements of VIGS; 4 Microorganisms for Crop Improvement; 4.1 Bacteria; 4.2 Fungi; 4.3 Virus; References; Chapter 2: Actinomycetes as Potential Plant Growth-Promoting Microbial Communities; 1 Introduction; 2 Actinomycetes as Plant Growth Promoters; 2.1 Phosphate Solubilization; 2.2 Phytohormones Production; 2.3 Nutrient Mobilization; 3 Actinomycetes for Disease Suppression
3.1 Antibiotic Production3.2 Actinomycetes for Reduced Dependency on Agrochemicals; 4 Actinomycetes for Biodegrading and Bioremediation; 5 Production of Novel Substances; 6 Futuristic Approaches; References; Chapter 3: Microbial Genes in Crop Improvement; 1 Introduction; 2 Microbial Genes and Genetic Elements Deployed for Plant Transformation; 3 Microbial Genes for Insect Resistance; 4 Microbial Genes for Herbicide Tolerance; 5 Microbial Genes for Modified Product Quality; 6 Microbial Genes for Abiotic Stress Tolerance; 7 Microbial Genes for Pathogen Resistance
8 Microbial Genes for Hybrid Seed Production9 Public Perceptions and Biosafety Aspects of Use of Microbial Genes in Crop Improvement; 10 Coevolution of Plants and Microbes and Presence of Microbial Genetic Elements in Native Plants; 11 Load of Microbial Ingestions in Human Diets; 12 Conclusion; Acknowledgments; References; Chapter 4: Microbial Transformations Implicit With Soil and Crop Productivity in Rice System; 1 Introduction; 2 Microbial Niches in Submerged Soils; 3 Major Microflora Associated With Rice Soil; 4 Sustainability of Rice Soil Ecosystems
5 Microbial Involvement in Sustainability6 Altering Anaerobic and Aerobic Interface and Pesticide Biodegradation; 7 Implication of Microbial Methane Production From Flooded Soil; 8 Mitigation Options for Reducing Methane Emission From Flooded Rice; 9 Conclusions; References; Chapter 5: Application of Microbial Biotechnology in Food Processing; 1 Introduction; 2 Current Status of Microbial Biotechnology in Food Processing; 2.1 Roots, Tubers, and Cereal Grain Foods; 2.1.1 Improvement of Nutritional Quality; Energy Density; Nutrient Bioavailability; 2.1.2 Detoxification
Summary Crop Improvement through Microbial Biotechnology explains how certain techniques can be used to manipulate plant growth and development, focusing on the cross-kingdom transfer of genes to incorporate novel phenotypes in plants, including the utilization of microbes at every step, from cloning and characterization, to the production of a genetically engineered plant. This book covers microbial biotechnology in sustainable agriculture, aiming to improve crop productivity under stress conditions. It includes sections on genes encoding avirulence factors of bacteria and fungi, viral coat proteins of plant viruses, chitinase from fungi, virulence factors from nematodes and mycoplasma, insecticidal toxins from Bacillus thuringiensis, and herbicide tolerance enzymes from bacteria
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (EBSCO, viewed February 27, 2018)
Subject Crop improvement.
Microbial biotechnology.
TECHNOLOGY & ENGINEERING -- Agriculture -- General.
Crop improvement
Microbial biotechnology
Form Electronic book
Author Prasad, Ram, editor
Gill, Sarvajeet Singh, editor.
Tuteja, Narendra, editor.
ISBN 9780444639882
0444639888