Limit search to available items
Book Cover
E-book
Author Zhou, Lixing, author.

Title Theory and modeling of dispersed multiphase turbulent reacting flows / Lixing Zhou
Published Oxford : Butterworth-Heinemann, [2018]
©2018
Online access available from:
ScienceDirect eBooks    View Resource Record  

Copies

Description 1 online resource
Contents 880-01 Algorithms for Eulerian -- Eulerian Modeling -- References -- 9. Simulation of Flows and Combustion in Practical Fluid Machines, Combustors, and Furnaces -- 9.1. Oil-Water Hydrocyclone -- 9.2. Gas-Solid Cyclone Separator -- 9.3. Nonslagging Vortex Coal Combustor -- 9.4. Spouting-Cyclone Coal Combustor -- 9.5. Pulverized-Coal Furnaces -- 9.6. Spray Combustors -- 9.7. Concluding Remarks -- References
880-01/(S Machine generated contents note: 1. Some Fundamentals of Dispersed Multiphase Flows -- 1.1. Particle/Spray Basic Properties -- 1.1.1. Particle/Droplet Size and Its Distribution -- 1.1.2. Apparent Density and Volume Fraction -- 1.2. Particle Drag, Heat, and Mass Transfer -- 1.3. Single-Particle Dynamics -- 1.3.1. Single-Particle Motion Equation -- 1.3.2. Motion of a Single Particle in a Uniform Flow Field -- 1.3.3. Particle Gravitational Deposition -- 1.3.4. Forces Acting on Particles in Nonuniform Flow Field -- 1.3.4.1. Magnus Force -- 1.3.4.2. Saffman Force -- 1.3.4.3. Particle Thermophoresis, Electrophoresis, and Photophoresis -- 1.3.5. Generalized Particle Motion Equation -- 1.3.6. Recent Studies on Particle Dynamics -- References -- Further Reading -- 2. Basic Concepts and Description of Turbulence -- 2.1. Introduction -- 2.2. Time Averaging -- 2.3. Probability Density Function -- 2.4. Correlations, Length, and Time Scales -- References -- 3. Fundamentals of Combustion Theory -- 3.1. Combustion and Flame -- 3.2. Basic Equations of Laminar Multicomponent Reacting Flows and Combustion -- 3.2.1. Thermodynamic Relationships of Multicomponent Gases -- 3.2.2. Molecular Transport Laws of Multicomponent Reacting Gases -- 3.2.3. Basic Relationships of Chemical Kinetics -- 3.2.4. Reynolds Transport Theorem -- 3.2.5. Continuity and Diffusion Equations -- 3.2.6. Momentum Equation -- 3.2.7. Energy Equation -- 3.2.8. Boundary Conditions at the Interface and Stefan Flux -- 3.3. Ignition and Extinction -- 3.3.1. Basic Concept -- 3.3.2. Dimensional Analysis -- 3.3.3. Ignition in an Enclosed Vessel---Simonov's Unsteady Model -- 3.3.4. Ignition Lag (Induction Period) -- 3.3.5. Ignition by a Hot Plate---Khitrin--Goldenberg Model -- 3.3.6. Ignition and Extinction---Vulis Model -- 3.4. Laminar Premixed and Diffusion Combustion -- 3.4.1. Background -- 3.4.2. Basic Equations and Their Properties -- 3.4.3. Two-Zone Approximate Solution -- 3.4.4. Laminar Diffusion Flame -- 3.5. Droplet Evaporation and Combustion -- 3.5.1. Background -- 3.5.2. Droplet Evaporation in Stagnant Air -- 3.5.3. Basic Equations for Droplet Evaporation and Combustion -- 3.5.4. Droplet Evaporation With and Without Combustion -- 3.5.5. Droplet Evaporation and Combustion under Forced Convection -- 3.5.6. d2 Law -- 3.5.7. Experimental Results -- 3.5.8. Droplet Ignition and Extinction -- 3.6. Solid-Fuel: Coal-Particle Combustion -- 3.6.1. Background -- 3.6.2. Coal Pyrolyzation (Devolatilization) -- 3.6.3. Carbon Oxidation -- 3.6.4. Carbon Oxidation---Basic Equations -- 3.6.5. Carbon Oxidation---Single-Flame-Surface Model-Only Reaction 1 or 2 at the Surface -- 3.6.6. Carbon Oxidation---Two-Flame-Surface Model -- 3.6.7. Coal-Particle Combustion -- 3.7. Turbulent Combustion and Flame Stabilization -- 3.7.1. Background -- 3.7.2. Turbulent Jet Diffusion Flame -- 3.7.3. Turbulent Premixed Flame---Damkohler--Shelkin's Wrinkled-Flame Model -- 3.7.4. Turbulent Premixed Flame---Summerfield--Shetinkov's Volume Combustion Model -- 3.7.5. Flame Stabilization -- 3.8. Conclusion on Combustion Fundamentals -- References -- 4. Basic Equations of Multiphase Turbulent Reacting Flows -- 4.1. Control Volume in a Multiphase-Flow System -- 4.2. Concept of Volume Averaging -- 4.3. "Microscopic" Conservation Equations Inside Each Phase -- 4.4. Volume-Averaged Conservation Equations for Laminar/Instantaneous Multiphase Flows -- 4.5. Reynolds-Averaged Equations for Dilute Multiphase Turbulent Reacting Flows -- 4.6. PDF Equations for Turbulent Two-Phase Flows and Statistically Averaged Equations -- 4.7. Two-Phase Reynolds Stress and Scalar Transport Equations -- References -- 5. Modeling of Single-Phase Turbulence -- 5.1. Introduction -- 5.2. Closure of Single-Phase Turbulent Kinetic Energy Equation -- 5.3. k-e Two-Equation Model and Its Application -- 5.4. Second-Order Moment Closure of Single-Phase Turbulence -- 5.5. Closed Model of Reynolds Stresses and Heat Fluxes -- 5.6. Algebraic Stress and Flux Models---Extended k-ε Model -- 5.7. Application of DSM and ASM Models and Their Comparison with Other Models -- 5.8. Large-Eddy Simulation -- 5.8.1. Filtration -- 5.8.2. SGS Stress Models -- 5.8.3. LES of Swirling Gas Flows -- 5.9. Direct Numerical Simulation -- References -- 6. Modeling of Dispersed Multiphase Turbulent Flows -- 6.1. Introduction -- 6.2. Hinze--Tchen's Algebraic Model of Particle Turbulence -- 6.3. Unified Second-Order Moment Two-Phase Turbulence Model -- 6.4. k -- ε -- kp and k -- ε -- Ap Two-Phase Turbulence Model -- 6.5. Application and Validation of USM, k -- ε -- kp--kpg and k -- ε -- Ap Models -- 6.6. Improved Second-Order Moment Two-Phase Turbulence Model -- 6.7. Mass-Weighted Averaged USM Two-Phase Turbulence Model -- 6.8. DSM-PDF and k -- ε -PDF Two-Phase Turbulence Models -- 6.9. SOM-MC Model of Swirling Gas-Particle Flows -- 6.10. Nonlinear k -- ε -- kp Two-Phase Turbulence Model -- 6.11. Kinetic Theory Modeling of Dense Particle (Granular) Flows -- 6.12. Two-Phase Turbulence Models for Dense Gas-Particle Flows -- 6.13. Eulerian---Lagrangian Simulation of Gas-Particle Flows -- 6.13.1. Governing Equations for the Deterministic Trajectory Model -- 6.13.2. Modification for Particle Turbulent Diffusion -- 6.13.3. Stochastic Trajectory Model -- 6.13.4. DEM Simulation of Dense Gas-Particle Flows -- 6.14. Large-Eddy Simulation of Turbulent Gas-Particle Flows -- 6.14.1. Eulerian---Lagrangian LES of Swirling Gas-Particle Flows -- 6.14.2. Eulerian---Lagrangian LES of Bubble-Liquid Flows -- 6.14.3. Two-Fluid LES of Swirling Gas-Particle Flows -- 6.14.4. Application of LES in Engineering Gas-Particle Flows -- 6.15. Direct Numerical Simulation of Dispersed Multiphase Flows -- References -- 7. Modeling of Turbulent Combustion -- 7.1. Introduction -- 7.2. Time-Averaged Reaction Rate -- 7.3. Eddy-Break-Up (EBU) Model/Eddy Dissipation Model (EDM) -- 7.4. Presumed PDF Models -- 7.4.1. Probability Density Distribution Function -- 7.4.2. Simplified PDF-Local Instantaneous Nonpremixed Fast-Chemistry Model -- 7.4.3. Simplified PDF-Local Instantaneous Equilibrium Model -- 7.4.4. Simplified-PDF Finite-Rate Model -- 7.5. PDF Transport Equation Model -- 7.6. Bray---Moss---Libby (BML) Model -- 7.7. Conditional Moment Closure (CMC) Model -- 7.8. Laminar-Flamelet Model -- 7.9. Second-Order Moment Combustion Model -- 7.9.1. Early Developed Second-Order Moment Model -- 7.9.2. Updated Second-Order Moment (SOM) Model -- 7.9.3. Application of the SOM Model in RANS Modeling -- 7.9.4. Validation of the SOM Model by DNS -- 7.10. Modeling of Turbulent Two-Phase Combustion -- 7.10.1. Two-Fluid Modeling of Turbulent Two-Phase Combustion -- 7.10.2. Two-Fluid-Simulation of Coal Combustion in a Combustor with High-Velocity Jets -- 7.10.3. Two-Fluid Modeling of Coal Combustion and NO Formation in a Swirl Combustor -- 7.10.4. Eulerian--Lagrangian Modeling of Two-Phase Combustion -- 7.11. Large-Eddy Simulation of Turbulent Combustion -- 7.11.1. LES Equations and Closure Models for Simulating Gas Turbulent Combustion -- 7.11.2. LES of Swirling Diffusion Combustion, Jet Diffusion Combustion, and Bluff-Body Premixed Combustion -- 7.11.3. LES of Ethanol-Air Spray Combustion -- 7.11.4. LES of Swirling Coal Combustion -- 7.12. Direct Numerical Simulation of Turbulent Combustion -- References -- 8. Solution Procedure for Modeling Multiphase Turbulent Reacting Flows -- 8.1. PSIC Algorithm for Eulerian--Lagrangian Models -- 8.2. LEAGAP Algorithm for E---E---L Modeling -- 8.3. PERT Algorithm for Eulerian---Eulerian Modeling -- 8.4. GENMIX-2P and IPSA
Summary Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering
Bibliography Includes bibliographical references and index
Notes Vendor-supplied metadata
Subject Turbulence -- Mathematical models
Combustion -- Mathematical models
Fluid dynamics -- Mathematical models
TECHNOLOGY & ENGINEERING -- Hydraulics.
Combustion -- Mathematical models
Fluid dynamics -- Mathematical models
Turbulence -- Mathematical models
Form Electronic book
ISBN 9780128134665
0128134666
0128134658
9780128134658