Limit search to available items
Book Cover
E-book

Title Sustainable natural gas reservoir and production engineering / edited by David A. Wood and Jianchao Cai
Published Cambridge, MA : Gulf Professional Publishing, [2022]

Copies

Description 1 online resource
Series The fundamentals and sustainable advances in natural gas science and engineering series ; v. 1
Fundamentals and sustainable advances in natural gas science and engineering series ; v. 1
Contents Intro -- Sustainable Natural Gas Reservoir and Production Engineering -- Copyright -- Contents -- Contributors -- Preface -- About the fundamentals and sustainable advances in natural gas science and engineering series -- About volume 1: sustainable natural gas reservoir and production engineering -- Chapter One: Gas properties, fundamental equations of state and phase relationships -- 1. Introduction to natural gas -- 1.1. Composition of natural gas -- 1.2. Classification of natural gas -- 1.3. Measurement standards -- 2. Gas equation of state -- 2.1. Equation of state -- 2.2. Calculation of compressibility factor -- 3. Physical and thermodynamic properties of natural gas -- 3.1. Relative molecular mass -- 3.2. Density of natural gas -- 3.3. Critical parameters and reduced parameters -- 3.4. Enthalpy of natural gas -- 3.5. Entropy of natural gas -- 3.6. Specific heat capacity of natural gas -- 3.7. Joule-Thompson coefficient -- 3.8. Calorific value of natural gas -- 3.9. Explosion limit of natural gas -- 3.10. Viscosity of natural gas -- 3.11. Thermal conductivity coefficient of natural gas -- 4. Phase relationships of natural gas -- 4.1. Dew point and bubble point of natural gas -- 4.2. Vaporization rate of natural gas -- 5. Summary -- References -- Chapter Two: Natural gas demand prediction: Methods, time horizons, geographical scopes, sustainability issues, and scenarios -- 1. Introduction -- 2. Fundamentals of natural gas demand prediction requirements -- 3. Advanced aspects of natural gas demand prediction methodologies -- 3.1. Identifying relevant published research on gas prediction -- 3.2. Analysis of gas prediction methodologies applied based on the relevant published research identified -- 3.2.1. Questions addressed in the analysis -- 3.2.2. Insight gained from analysis of published gas prediction studies
3.2.3. Prediction time horizons and geographical scopes -- 3.2.4. Sustainable development features considered in published studies -- 4. Case study: A learning scenario development model providing sustainable global natural gas demand predictions -- 5. Summary -- A. Appendix -- References -- Chapter Three: Machine learning to improve natural gas reservoir simulations -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Reservoir simulation -- 2.2. Governing equations of gas reservoir simulations -- 3. Advanced research/field applications -- 3.1. Application of ML in data preprocessing and prediction of properties -- 3.2. Application of ML in governing equations and numerical solutions -- 3.3. Application of ML in history matching -- 3.4. Application of ML in proxy modeling and optimization -- 4. Case study: Dew point prediction for gas condensate reservoirs -- 4.1. Dew point pressure -- 4.2. Data analysis -- 4.3. ANN-TLBO model design -- 4.4. CNN model design -- 4.5. Overfitting and appropriate remedies -- 4.6. Evaluation and discussion -- 5. Summary -- Chapter Three. References -- References -- Chapter Three. References -- References -- Chapter Four: In situ stress and mechanical properties of unconventional gas reservoirs -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. In situ stress -- 2.2. Mechanical properties of unconventional reservoirs -- 2.2.1. Calculation of static mechanical parameters -- 2.2.2. Dynamic mechanical parameters calculation -- 3. Advanced research/field applications -- 3.1. Brittleness evaluation index application -- 3.2. Field applications -- 4. Case study -- 4.1. Geological background -- 4.2. Samples and data processing -- 4.3. Reservoir characteristics -- 4.4. Geomechanical parameters -- 4.4.1. Static mechanical test results -- 4.4.2. Conversion of dynamic and static parameters
4.5. Brittleness analysis of shale -- 4.6. In-situ stress magnitude -- 5. Summary and conclusions -- Declarations -- Chapter Four. References -- References -- Chapter Five: Hydraulic fracturing of unconventional reservoirs aided by simulation technologies -- 1. Introduction -- 2. Mathematical models for hydraulic fracturing -- 2.1. Governing equations -- 2.1.1. Deformation of the rock matrix and the fractures -- 2.1.2. Fracture propagation -- 2.1.3. Fluid flow in fractures and pores -- 2.1.4. Thermal transport -- 2.2. Analytical and semi-analytical solutions for the propagation of a single hydraulic fracture -- 3. Numerical methods for simulation of hydraulic fracturing -- 4. Case study: Simulation of hydraulic fracture propagation in a shale formation -- 4.1. Model generation -- 4.2. Effects of 3D stress on induced fracture propagation -- 4.3. Effects of natural fracture orientations on induced fracture propagation -- 4.4. Effects of natural fracture state on induced fracture propagation -- 4.5. Effects of drilling direction on induced fracture propagation -- 5. Summary and conclusions -- Chapter Five. References -- References -- Chapter Six: Experimental methods in fracturing mechanics focused on minimizing their environmental footprint -- 1. Introduction -- 2. Experimental methods in fracturing mechanics -- 2.1. Micromechanical tests of rock -- 2.1.1. Grid nanoindentation tests -- 2.1.2. Atomic force microscope for micromechanical properties mapping -- SEM and EDS -- Atomic force microscopy (AFM) -- High resolution characterization of individual mineral aggregates -- 2.2. Triaxial tests for rocks with SC-CO2 -- 2.3. Triaxial direct shear test for rocks and shear induced permeability evolution -- 2.3.1. Experimental setup -- 2.3.2. Experimental scheme and procedure -- 2.4. Mechanical test of rock sample treated by liquid nitrogen
2.4.1. Macro-scale mechanical tests under LN2 freezing condition -- 2.4.2. Cryo-scanning electron microscopy test -- 3. Experimental methods for waterless fracturing -- 3.1. Triaxial fracturing system -- 3.1.1. True triaxial-loading and heating vessel -- 3.1.2. Pumping system for supercritical CO2 -- 3.1.3. Pumping system for liquid nitrogen -- 3.2. Triaxial fracturing for supercritical CO2 -- 3.2.1. Rock specimen preparation -- 3.2.2. Experimental procedures -- 3.2.3. Experimental results -- 3.3. Triaxial fracturing for liquid nitrogen -- 3.3.1. Experimental procedures -- 3.3.2. Fracturing experiment results -- 3.4. High-speed imaging of multiple fract propagation using homogenous transparent solids -- 3.4.1. Transparent material selection -- 3.4.2. Modified triaxial vessel and transparent solids for high-speed imaging -- 3.4.3. Scaling laws and parameter design -- 3.4.4. Experiment procedures -- 4. Fracture monitoring and analysis methods -- 4.1. Manual optical observation method -- 4.2. Acoustic emission monitoring method -- 4.3. 2D slice image analysis -- 4.4. 3D profilometry technique -- 4.5. 3D CT image reconstruction -- 4.6. CT images for characterization of fracture parameters -- 4.7. Other fracture evaluating approach -- Chapter Six. References -- References -- Chapter Seven: Production decline curve analysis and reserves forecasting for conventional and unconventional gas reservoirs -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Historical decline curve fitting methods -- 2.2. Arps model -- 2.3. Rate-cumulative relationships to establish reserves and EUR -- 2.4. Constraints and assumption applied with Arps models -- 3. Advanced research/field applications -- 3.1. Segmented decline curves suited to unconventional reservoirs -- 3.2. Power law exponential decline (PLE) -- 3.3. Stretched exponential decline (SEPD)
3.4. Duong's method -- 3.5. Logistic growth analysis (LGA) -- 3.6. Fetkovich type curve -- 3.7. Wattenbarger type curve -- 3.8. Blasingame type curve -- 3.9. Agarwal-Gardner type curve -- 3.10. Normalized pressure integral (NPI) -- 4. Case studies -- 4.1. Tip-top field conventional gas/vertical well case -- 4.2. Unconventional gas/horizontal well -- 5. Summary -- References -- Chapter Eight: Well test analysis for characterizing unconventional gas reservoirs -- 1. Introduction -- 2. Reservoir flow regimes -- 3. Pressure transient analysis (PTA) -- 3.1. Well test analysis for radial flow regime -- 3.2. Well test analysis for linear and elliptical flow regimes -- 3.3. Field example: Well test analysis for a multifractured shale gas reservoir -- 4. Rate transient analysis (RTA) -- 4.1. RTA field example: Multifractured shale gas reservoir -- 5. Uncertainties of SRV characterization using analytical methods -- 6. Characterizing SRV according to dual-permeability model -- 7. Effect of multiphase flow on PTA in unconventional Wells -- 8. A typical example in multiphase producing well test -- 9. Temperature transient analysis -- 10. Conclusions -- References -- Chapter Nine: Carbon-nanotube-polymer nanocomposites enable wellbore cements to better inhibit gas migration and enhance ... -- 1. Fundamental concepts -- 1.1. The key role of cement in achieving well integrity -- 1.2. Application of polymer additives in wellbore cement -- 1.3. Application of nanoparticles as wellbore cement additives -- 1.4. Wellbore cement reinforcement by CNT-polymer nanocomposite additive -- 2. Advanced consideration in controlling wellbore gas migration -- 2.1. Potential gas migration occurrences in wellbores -- 2.2. Major mechanisms in the emergence of gas migration in cement -- 2.2.1. Cement gelatinization in transient time
Notes Includes index
Print version record
Subject Gas reservoirs.
Production engineering.
Gas reservoirs
Production engineering
Form Electronic book
Author Wood, David A. (Petroleum engineer), editor.
Cai, Jianchao, editor
ISBN 9780323859561
0323859569