Limit search to available items
Book Cover
E-book
Author Duvvury, Charvaka, 1944-

Title System level ESD co-design / Charvaka Duvvury, Independent ESD Industry Consultant, Texas, USA, Harald Gossner, Intel, Germany
Published Hoboken : John Wiley and Sons, Inc., 2015

Copies

Description 1 online resource
Contents List of Contributors xiii -- Preface xv -- Acronyms xvii -- About the Book xxi -- 1 Introduction 1 Charvaka Duvvury -- 1.1 Definition of Co-Design 1 -- 1.2 Overview of the Book 2 -- 1.3 Challenges of System Level ESD Protection 2 -- 1.4 Importance of System Level Protection 2 -- 1.5 Industry-Wide Perception 5 -- 1.6 Purpose and Motivation 8 -- 1.7 Organization and Approach 8 -- 1.8 Outcome for the Reader 12 -- Acknowledgments 12 -- References 12 -- 2 Component versus System Level ESD 14 Charvaka Duvvury and Harald Gossner -- 2.1 ESD Threat in the Real World 14 -- 2.1.1 ESD Control 14 -- 2.1.2 ESD Failure Types 15 -- 2.1.3 ESD Protection Areas 16 -- 2.1.4 ESD Stress Models 17 -- 2.2 Component ESD Qualification 17 -- 2.2.1 Component ESD Tests 17 -- 2.2.2 ESD Levels for IC Production 18 -- 2.2.3 Implications for System Level ESD 20 -- 2.2.4 ESD Technology Roadmap 20 -- 2.3 System Level ESD Tests 21 -- 2.3.1 IEC 61000-4-2 22 -- 2.4 ISO 10605 29 -- 2.5 IEC 61000-4-5 31 -- 2.5.1 System Applications 32 -- 2.5.2 Misconceptions and Miscorrelation of Component and System Level Tests 35 -- 2.5.3 Hard Failures Due to IEC Testing 42 -- 2.6 Soft Failures Due to IEC Testing 42 -- Acknowledgments 43 -- References 43 -- 3 System Level Testing for ESD Susceptibility 46 Michael Hopkins -- 3.1 Introduction 46 -- 3.2 Objectives of System Level Testing 47 -- 3.3 Compliance to ESD Standards 47 -- 3.3.1 Legal Compliance Requirements 47 -- 3.3.2 Compliance to Industry Requirements 48 -- 3.4 Testing for Product Reliability 48 -- 3.5 Standards Requirements for System Level Testing 49 -- 3.5.1 IEC 61000-4-2 49 -- 3.5.2 Automotive Standards for ESD 58 -- 3.5.3 Medical Standards for ESD 60 -- 3.5.4 Avionics Standards for ESD 61 -- 3.5.5 Military ESD Standards 61 -- 3.6 Using the IEC Simulator for Device Testing 62 -- 3.7 Cable Discharge (CDE) Testing 63 -- 3.7.1 Shielded Cables 65 -- 3.7.2 Unshielded Cables 65 -- 3.7.3 Modified Transmission Line Pulsers (TLP) for CDE Testing 66 -- 3.8 Evaluation of Test Results 67 -- 3.8.1 Hard Failure Evaluation 67 -- 3.8.2 Soft Failure Evaluation 67 -- 3.9 The Quick Fix vs Root Cause Determination 67 -- 3.10 Determining Root Cause of System Level ESD 68 -- 3.11 Reproducibility of System Level ESD Tests 70 -- Acknowledgments 72 -- References 72 -- 4 PCB/IC Co-Design Concepts for SEED 74 Harald Gossner and Charvaka Duvvury -- 4.1 On-Chip System ESD Protection 74 -- 4.1.1 HBM and CDM vs IEC 74 -- 4.1.2 TLP Characterization 76 -- 4.1.3 TLP Correlation Issues 78 -- 4.2 Off-Chip ESD Protection 79 -- 4.3 Concept of PCB/IC Co-Design 82 -- 4.3.1 On-Chip IEC Protection Solutions 84 -- 4.4 Introduction to System Efficient ESD Design 84 -- 4.4.1 Design Methods for SEED 90 -- 4.4.2 Basic Simulations using SEED 91 -- 4.4.3 USB Design using SEED 94 -- 4.5 Characterization for Hard Failures 97 -- 4.6 Simulation of System Level ESD Discharge Paths 98 -- 4.6.1 Simulation Approach 98 -- 4.6.2 Tools 101 -- 4.6.3 ESD Model Types 103 -- 4.6.4 Extraction of PCB Paths 104 -- 4.6.5 Models of PCB Devices 104 -- 4.6.6 Characterization of IO Cells 106 -- 4.6.7 Power Clamp Models 112 -- 4.6.8 Model for Stress Waveform 114 -- 4.7 Characterization of Soft Failures 116 -- 4.7.1 Purpose and Basic Concept 116 -- 4.7.2 Pin Specific Soft Failure Characterization 120 -- 4.7.3 Soft Failures Related to Signal Integrity Problems 123 -- 4.8 Summary of SEED Characterization 125 -- Acknowledgments 126 -- References 127 -- 5 Hard Failures and PCB Protection Devices 129 Robert Ashton -- 5.1 Introduction 129 -- 5.2 ESD Damage to ICs 129 -- 5.3 Protection Methods 130 -- 5.3.1 Classification of TVS Devices 133 -- 5.4 Characteristics of Protection Devices 134 -- 5.4.1 Current Limiting Devices 134 -- 5.4.2 TVS Properties in Their Off-State 135 -- 5.4.3 Protection Properties of TVS Devices 137 -- 5.5 Types of Protection Devices for ESD 142 -- 5.5.1 Silicon Based TVS Devices 143 -- 5.5.2 Metal Oxide Varistors 154 -- 5.5.3 Polymer Voltage Suppressors 155 -- 5.5.4 Gas Discharge Tubes 156 -- 5.5.5 Spark Gaps on PCBs 158 -- 5.5.6 Thyristor Surge Protection Devices 159 -- 5.5.7 Ferrite Beads 159 -- 5.5.8 Passive Components 161 -- 5.5.9 Common Mode Filters 162 -- 5.6 Primary and Secondary Protection 163 -- 5.7 Evaluating IC Pins 164 -- 5.8 Choosing ESD Protection Devices 164 -- 5.8.1 Coordination between TVS Device and Sensitive Nodes 165 -- 5.9 Summary 167 -- References 167 -- 6 Soft Failure Mechanisms and PCB Design Measures 169 David Pommerenke and Pratik Maheshwari -- 6.1 Introduction 169 -- 6.2 Are HBM, CDM, MM, and Latch-Up Results Meaningful Soft Failures? 171 -- 6.3 Classification of Soft Failure Modes 173 -- 6.3.1 In-Band/Out-of-Band with Respect to Voltage 174 -- 6.3.2 In-Band/Out-of-Band with Respect to Pulse Width 175 -- 6.3.3 Local vs Distant Errors 176 -- 6.3.4 Amplified/Non-amplified Soft Failures 176 -- 6.4 Optimized System Level Testing 178 -- 6.5 Soft Failure Characterization Methods 182 -- 6.5.1 Susceptibility Scanning 183 -- 6.5.2 Current Spreading Reconstruction 190 -- 6.5.3 Local Injection 191 -- 6.5.4 Software-Based Methods for Soft Failure Analysis 201 -- 6.6 Soft Failure Examples 205 -- 6.6.1 Example 1: Soft Failure Caused by Field Injection on a DUT (Mini Photo Frame) 205 -- 6.6.2 Example 2: PLL Disturbance Measurement 207 -- 6.6.3 Example 3: Direct Field Coupling on the USB Data Bus 212 -- 6.6.4 Example 4: Direct Injection on the MIPI Bus Interface 215 -- 6.7 Countermeasure Examples 216 -- 6.7.1 Divert Current 216 -- 6.7.2 Filtering 217 -- 6.7.3 Shielding 217 -- 6.7.4 Secondary ESD Avoidance 218 -- 6.7.5 Improved Connector-Cable Shield Connection 218 -- 6.7.6 Enclosure to Connector Shield Junction 218 -- 6.7.7 Firmware 218 -- 6.7.8 Reducing Crosstalk 219 -- 6.7.9 Reduce ESD Current by Resistance 220 -- 6.7.10 Avoid ESD 222 -- 6.8 The Way Forward 223 -- Acknowledgment 230 -- References 231 -- 7 ESD in Mobile Devices 234 Matti Uusimäki -- 7.1 Introduction 234 -- 7.2 ESD Energy Path in Mobile Device 234 -- 7.3 ESD Generation Examples on a Large Scale 239 -- 7.3.1 Large Machines Generating Charges to Their Isolated Bodies 239 -- 7.3.2 Tribo-Electric Series 240 -- 7.3.3 Charge Generated by a Person Inside a Car 240 -- 7.3.4 The Charge Generated to Mobile Device by Accident in Grounded System 241 -- 7.3.5 Alternative Discharging Paths at Connection Moment 244 -- 7.3.6 Charge Behavior at Insulator Surface 244 -- 7.3.7 Example of Consumer Level Charge Generation with Simple Device 246 -- 7.4 Relation between Electrostatic Discharge Immunity Test and Real-World Discharge Waveforms 248 -- 7.5 Laboratory Test Methods 248 -- 7.6 Fast ESD and Slow ESD Concepts 249 -- 7.7 Fast-ESD and Slow-ESD in a Mobile Device 250 -- 7.7.1 Example of Ground Level Bounce Relative to an External Module 251 -- 7.8 Isolating a Mobile Device 252 -- 7.8.1 Example 1: Material Thickness 252 -- 7.8.2 Example 2: Solid Glue 253 -- 7.8.3 Example 3: Positioning Holes in a Rubberized Key Mat 255 -- 7.8.4 Example 4: Induced Electric Field 255 -- 7.9 Shielding a Mobile Device 257 -- 7.10 Orientation Effects on ESD Path 259 -- 7.10.1 ESD Path Example: Phone Face Up on Table 259 -- 7.10.2 ESD Path Example: Phone Face Down on the Table 263 -- 7.11 ESD Design in Practice 264 -- 7.11.1 Grounding Challenges in Practice 264 -- 7.12 PCB Layout Considerations of Metal Shielding “Cans” 267 -- 7.12.1 Components Near the Edge of the Shield 268 -- 7.13 ESD Protection for Cable Interfaces 269 -- 7.13.1 Cable Placement and Common Mode Current in a Mobile Device 270 -- 7.13.2 Localizing Noise Current with Alternate Cabling Placement 274 -- 7.13.3 Cable Interface Protection Components 275 -- 7.14 Common Mode Impedance Concerns for Layout 280 -- 7.14.1 Common Mode Impedance Challenges in the Grounding Paths 280 -- 7.14.2 Signals with Shared Common Mode Impedance 280 -- 7.14.3 Isolating Signals with Shield Grounded to Internal PCB Layers 282 -- 7.14.4 Simulated Example of Ground Impedance Effect on ESD/EMI Filter Performance 283 -- 7.14.5 ESD Protection on Stacked Chips 283 -- 7.14.6 Layout Concerns around the Periphery and PCB Cutouts 285 -- 7.15 ESD and Software Considerations in Mobile Devices 287 -- 7.15.1 Role of Software in EMC and ESD Design 287 -- 7.15.2 Signal Sensitivity to ESD Examples 288 -- 7.15.3 Delayed Effects on Software from ESD Events 290 -- 7.16 Software Versions Utilized in Early ESD Immunity Testing 291 -- 7.17 Conclusion 292 -- References 292 -- 8 ESD for Automotive Applications 294 Wolfgang Reinprecht -- 8.1 Introduction and Historical Aspects 294 -- 8.1.1 Why Do Automotive Components Require High ESD Levels? 294 -- 8.1.2 Field Return Rate of Automotive Products due to System Level ESD Events 296 -- 8.1.3 ESD Related Field Returns Because of Incomplete Specification or Missing System Protection 297 -- 8.2 Automotive Components 299 -- 8.2.1 Communication Systems CAN, LIN, FlexRay 299 -- 8.2.2 Power Supply Systems as DCDC Converter, Alternator, LDO 303 -- 8.2.3 Sensors and Sensor Interfaces 304 -- 8.2.4 Keyless Entry/Go with Components Exposed to Human Touching/Handling 311 -- 8.2.5 Power Steering, Drive by Wire, Gearbox, Hybrid Systems, Recuperation 313 -- 8.2.6 LED Lights, Entertainment, Navigation, and Audio 313 -- 8.3 Design Constraints, Operating Voltage, and Overvoltage Tolerance 315 -- 8.3.1 “Normal Overvoltage Range”: 18 V into 5 V/3 V/1.8 V 315 -- 8.3.2 Load Dump 315 -- 8.3.3 Loss of Ground, Dual Polarity, and Reverse Polarity 317 -- 8.3.4 EMC Tolerance versus ESD Robustness (Fast Transients) 319 -- 8.3.5 Leakage Current versus ESD Robustness (Pre-Pulse Voltage) 320 -- 8.3.6 Latch-Up-Free ESD Protection versus Snapback Devices 321 -- 8.4 On-Board ESD Protection and Internal ESD Protection 324 -- 8.4.1 Characterization Met ..
Summary "Demystifies the concept of system-level ESD and details its difference from the conventional component level ESD design and testing. Describes the protection elements and designs and focuses on the "co-design", an optimization methodology to address both issues in the same design space"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes Machine generated contents note: Chapter 1 Introduction Charvaka Duvvury Chapter 2 Component Versus System Level ESD Charvaka Duvvury and Harald Gossner Chapter 3 System Level Testing for ESD Susceptibility Michael Hopkins Chapter 4 PCB/IC Co-Design Concepts for SEED Harald Gossner and Charvaka Duvvury Chapter 5 Hard Fails & PCB Protection Devices Robert Ashton Chapter 6 Soft Fail and PCB design measures David Pommerenke and Pratik Maheshwari Chapter 7 ESD in Mobile Devices Matti Uusimaki Chapter 8 ESD for Automotive Applications Wolfgang Reinprecht Chapter 9 Futire Applications of SEED Methodology Harald Gossner and Charvaka Duvvury Chapter 10 Co-Design Tradeoffs: Balancing Robustness, Performance and Cost Jeffery C. Dunnihoo Index
Print version record and CIP data provided by publisher
Subject Shielding (Electricity)
Electronic apparatus and appliances -- Design and construction.
Integrated circuits -- Design and construction.
Integrated circuits -- Protection
Electrostatics.
Static eliminators.
antistatic agent.
TECHNOLOGY & ENGINEERING -- Power Resources -- General.
Electronic apparatus and appliances -- Design and construction
Electrostatics
Integrated circuits -- Design and construction
Integrated circuits -- Protection
Shielding (Electricity)
Static eliminators
Form Electronic book
Author Gossner, Harald
LC no. 2015012035
ISBN 9781118861882
1118861884
9781118861844
1118861841
9781118861899
1118861892