Limit search to available items
Book Cover
E-book
Author Nedjalkov, Mihail, author.

Title Stochastic approaches to electron transport in micro- and nanostructures / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Published Cham : Birkhäuser, [2021]

Copies

Description 1 online resource
Series Modeling and simulation in science, engineering and technology
Modeling and simulation in science, engineering & technology.
Contents Intro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space
3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis
Part II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications
7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms -- 7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity
8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing
Summary The book serves as a synergistic link between the development of mathematical models and the emergence of stochastic (Monte Carlo) methods applied for the simulation of current transport in electronic devices. Regarding the models, the historical evolution path, beginning from the classical charge carrier transport models for microelectronics to current quantum-based nanoelectronics, is explicatively followed. Accordingly, the solution methods are elucidated from the early phenomenological single particle algorithms applicable for stationary homogeneous physical conditions up to the complex algorithms required for quantum transport, based on particle generation and annihilation. The book fills the gap between monographs focusing on the development of the theory and the physical aspects of models, their application, and their solution methods and monographs dealing with the purely theoretical approaches for finding stochastic solutions of Fredholm integral equations
Bibliography Includes bibliographical references
Notes Online resource; title from PDF title page (SpringerLink, viewed April 14, 2021)
Subject Electron transport -- Mathematical models
Charge carrier processes.
Microelectronics -- Mathematical models
Nanoelectronics -- Mathematical models
Monte Carlo method.
Monte Carlo Method
Proceso de datos -- Modelos matemáticos
Microelectrónica -- Modelos matemáticos
Charge carrier processes
Electron transport -- Mathematical models
Microelectronics -- Mathematical models
Monte Carlo method
Transport d'electrons.
Microelectrònica.
Nanoelectrònica.
Models matemàtics.
Genre/Form Llibres electrònics.
Form Electronic book
Author Dimov, Ivan, 1963- author.
Selberherr, Siegfried, 1955- author.
ISBN 9783030679170
3030679179