Limit search to available items
Book Cover
Book
Author Lüttge, U. (Ulrich)

Title Plant desiccation tolerance / Ulrich Lüttge, Erwin Beck, Dorothea Bartels
Published Heidelberg : Springer, [2011]
©2011

Copies

Location Call no. Vol. Availability
 MELB  581.4 Jen/Pdt 2011  AVAILABLE
Description xvii, 386 pages : illustrations (some color) ; 25 cm
Series Ecological studies, 0070-8356 ; v. 215
Ecological studies. 0070-8356 ; v. 215
Contents Contents note continued: 10.11.Overall Consequences of Whole-Plant Hydraulics for Desiccation Tolerance -- References -- 11.Drought, Desiccation, and Oxidative Stress / Erwin Beck -- 11.1.Introduction -- 11.2.Avoiding ROS Production Under Drought Stress -- 11.3.Cell Biology and Biochemistry of ROS-Producing and ROS-Detoxifying Systems and Their Relation to Water Deficit -- 11.4.ROS, Antioxidative Systems, and Drought -- 11.4.1.The Oxygen Radical O2 -- 11.4.2.Hydrogen Peroxide (H202) -- 11.4.3.Singlet Oxygen -- 11.4.4.The Cellular Thiol/Disulfide Redox State as a Regulator of a Cell's Response to Oxidative Stress and Drought -- 11.5.Involvement of ROS in Dehydration-Signal Transduction -- 11.5.1.Interactions of ROS and ABA -- 11.5.2.Involvement of ROS in Drought Sensing and Signal Transduction -- 11.5.3.NO as a Component of the ROS-Signaling Network -- 11.6.ROS, ABA, and the Regulation of the Stomates -- 11.7.Dehydration of Seeds: A Special Case --
Contents note continued: 11.8.Improvement of Stress Tolerance by GeneTransfer: The Role of ROS -- References -- 12.Chamaegigas intrepidus DINTER: An Aquatic Poikilohydric Angiosperm that Is Perfectly Adapted to Its Complex and Extreme Environmental Conditions / Wolfram Hartung -- 12.1.Introduction -- 12.2.Distribution and Habitat -- 12.3.Site Description -- 12.4.Environmental Stress Conditions -- 12.4.1.Air Temperature and Humidity at the Rock Surface -- 12.4.2.Water Level and Conductivity -- 12.4.3.Temperature and pH of the Pool Water -- 12.4.4.CO2 and HCO3 Concentration of the Pool Water -- 12.4.5.Concentration of Mineral Nutrients in the Pool Water and the Sediment -- 12.5.Anatomical features of C. intrepidus -- 12.6.Physiological, Biochemical and Molecular Adaptations to Stress in C. intrepidus -- 12.6.1.Intracellular pH Stability -- 12.6.2.Photosynthesis -- 12.6.3.Nitrogen Nutrition -- 12.6.4.Abscisic Acid -- 12.6.5.Dehydrins -- 12.6.6.Carbohydrates --
Contents note continued: 12.7.Breeding System and Genetic Diversity in Chamaegigas Populations -- 12.8.Concluding Remarks -- References -- pt. III The Cell Biological Level -- 13.Molecular Biology and Physiological Genomics of Dehydration Stress / Hans J. Bohnert -- 13.1.Introduction -- 13.2.Physiology, Biochemistry, and Phenology of Drought and Desiccation -- 13.2.1.A Brief Summary of Drought-Response Physiology -- 13.2.2.Stress Response Circuits in Context -- 13.2.3.What Lies at the Basis of Stress Signalling? -- 13.3.Genomics -- 13.4.Drought-Responsive Molecular Mechanisms -- 13.4.1.Drought Signalling -- 13.4.2.Mechanisms for Modulating Sensitivity to ABA -- 13.4.3.The Role of Ubiquitination in Modulation of ABA Action -- 13.4.4.An Unexpected Role for Circadian-Associated Genes in the Regulation of Stress Responses -- 13.5.Genetically Programmed Desiccation Tolerance in Seeds -- 13.5.1.The Role of Hormones -- 13.5.2.Sugar Signalling --
Contents note continued: 13.5.3.Chaperones or Otherwise Protective Proteins -- 13.6.Roots as Sensors and Conduits of Changes in the Water Potential -- 13.7.The Potential for Engineering/Breeding Based on Knowledge -- 13.8.Where Does This Lead? -- References -- 14.Dehydrins: Molecular Biology, Structure and Function / Pia Harryson -- 14.1.Introduction -- 14.2.Dehydrins (Group 2 LEA Proteins) -- 14.3.The Cellular Localisation of Dehydrin Proteins in Plants -- 14.4.Expression of Dehydrins -- 14.5.Transgenic Plants Overexpressing Dehydrins and Knockout Mutants -- 14.6.Structure and Function of Dehydrins: Dehydrins -- Intrinsically Disordered Proteins -- 14.7.Structural Responses to TFE -- 14.8.Dehydrins and Background Crowding -- 14.9.Structural Responses to Temperature -- 14.10.Interaction to Lipid Vesicles and Sodium Dodecyl Sulphate -- 14.11.Chelating: Metal Binding -- 14.12.Structural Responses to pH Changes -- 14.13.Posttranslational Modifications: Phosphorylation --
Contents note continued: 14.14.Chaperone Activity -- 14.15.Outlook -- References -- 15.Understanding Vegetative Desiccation Tolerance Using Integrated Functional Genomics Approaches Within a Comparative Evolutionary Framework / Melvin J. Oliver -- 15.1.Introduction -- 15.2.Targeted Gene Discovery -- 15.3.Gene Discovery Using Expressed Sequence Tags -- 15.4.Transcriptome Analysis of Nonvascular Resurrection Plants -- 15.5.Transcriptome Analysis in Vascular Resurrection Plants -- 15.6.Subtractive Suppression Hybridization -- 15.7.cDNA-Amplified Fragment Length Polymorphism -- 15.8.Comparative Transcriptome Analysis in Resurrection Plants -- 15.9.High-Throughput Sequencing Approaches -- 15.9.1.Serial Analysis of Gene Expression -- 15.9.2.Next-Generation Sequencing Technologies -- 15.10.Protein Expression and Proteomics -- 15.11.Metabolomics and Fluxomics -- 15.11.1.Sugar Metabolism -- 15.11.2.Enzyme Activities -- 15.11.3.Reactive Oxygen Scavenging -- 15.11.4.Membranes and Lipids --
Contents note continued: 15.12.Signaling Pathways -- 15.13.Developmental Pathways of Seeds and DT Vegetative Tissues -- 15.14.Conclusion -- References -- 16.Resurrection Plants: Physiology and Molecular Biology / Syed Sarfraz Hussain -- 16.1.Evolution and Geographic Distribution of Desiccation-Tolerant Plants -- 16.1.1.A Window into Past Research of Desiccation Tolerance -- 16.1.2.Evolution of Desiccation Tolerance -- 16.1.3.Geographic Distribution and Ecology -- 16.1.4.Diversity Within Linderniaceae -- 16.2.Cellular Aspects -- 16.2.1.Morphological Adaptations -- 16.2.2.Mechanical Stress: Cell Wall Changes, Vacuole Fragmentation and Water Substitution -- 16.2.3.Membrane Fluidity -- 16.3.Physiology -- 16.3.1.Photosynthesis -- 16.3.2.Antioxidant Systems -- 16.3.3.Abscisic Acid Regulates Desiccation Tolerance Pathways -- 16.4.Gene Expression -- 16.4.1.Regulatory Molecules -- 16.4.2.Aquaporins -- 16.4.3.Carbohydrates -- 16.4.4.Compatible Solutes --
Contents note continued: 16.4.5.Protective Proteins: LEA Proteins and Heat Shock Proteins -- 16.5.Rehydration -- 16.6.Conclusions and Outlook -- References -- pt. IV Synopsis -- 17.Synopsis: Drying Without Dying / Erwin Beck -- References
Contents note continued: 3.3.4.Physiological Ecology of Desiccation on the Rock Outcrops of Tropical Inselbergs -- 3.4.Biological Fixation of Di-nitrogen (N2) -- 3.4.1.N2-Fixation and Input into Ecosystems -- 3.4.2.Recovery of N2-Fixation During Rewetting After Desiccation -- 3.5.Conclusions -- References -- 4.Eukaryotic Algae / Burkhard Budel -- 4.1.Introduction -- 4.2.Habitats and Species -- 4.2.1.Marine Coastal Algae -- 4.2.2.Terrestrial Algae -- 4.3.Physiological Ecology -- 4.3.1.Photosynthetic Patterns of Marine Algae -- 4.3.2.Release of Dissolved Organic Carbon During Rehydration -- 4.3.3.Drought Period and Resurrection -- 4.3.4.Antioxidants as a Protective Means -- 4.3.5.Compatible Solutes -- 4.3.6.Ultrastructure -- 4.4.Conclusion -- References -- 5.Lichens and Bryophytes: Habitats and Species / Michael Lakatos -- 5.1.Characteristics of Lichens and Bryophytes -- 5.2.Mechanisms of Water Exchange in Lichens and Bryophytes Allowing Desiccation Tolerance --
Contents note continued: 5.3.Processes at Intermittent Desiccation Between Activity and Inactivity -- 5.4.Functioning and Impacts of Non-vascular Plants at Microhabitats -- 5.4.1.Impacts of Non-vascular Plants at Microhabitats -- 5.4.2.Functioning of Non-vascular Soil Cover -- 5.4.3.Functioning of Non-vascular Epiphytic Cover -- 5.5.Global Patterns of Desiccation-Tolerant Lichens and Bryophytes -- 5.5.1.Global Patterns as an Indication for the Ecological Relevance -- 5.5.2.Impacts of Lichens and Bryophytes on the Carbon Cycle -- 5.5.3.Impacts of Lichens and Bryophytes on the Hydrological Cycle -- 5.6.Conclusion -- References -- 6.Ecophysiology of Desiccation/Rehydration Cycles in Mosses and Lichens / Ana Pintado -- 6.1.Introduction -- 6.1.1.Desiccation Tolerance: The Limits -- 6.1.2.Desiccation Tolerance: Physiology -- 6.2.Photosynthetic Response to Thallus Water Content -- 6.2.1.Overall Structure of the Photosynthesis/Water Content Response --
Contents note continued: 6.2.2.Thallus Water Content: The Limits -- 6.2.3.Water Content Response Curve: WCopt -- 6.2.4.Water Content Response Curve: The Ψ Dominated Zone -- 6.2.5.Water Content Response Curve: External Water Zone -- 6.3.Aligning Physiology with Habitat -- 6.4.Ecophysiological Implications of Hydration, Rehydration and the NP Response to WC -- 6.4.1.What Constrains the Bryophyte/Lichen Niche? -- 6.4.2.Lichens Versus Bryophytes: The Differences -- 6.5.Conclusions -- References -- 7.Lichens and Bryophytes: Light Stress and Photoinhibition in Desiccation/Rehydration Cycles -- Mechanisms of Photoprotection / Ulrich Luttge -- 7.1.Introduction -- 7.2.Conservation Versus Thermal Dissipation of Absorbed Light Energy in Hydrated Poikilohydric Photoautotrophs -- 7.3.Changes in Conservation and Thermal Dissipation of Absorbed Light Energy During Slow Desiccation --
Contents note continued: 7.4.Desiccation-Induced Decreased Light Absorption and Shading of Photobionts as Auxiliary Mechanisms of Photoprotection -- 7.5.Fast Thermal Energy Dissipation in Desiccated Poikilohydric Photoautotrophs as Central Mechanism of Photoprotection -- 7.6.Changes in Conservation and Thermal Dissipation of Absorbed Light Energy upon Hydration -- 7.7.Vulnerability of PSII RCs to Photooxidative Damage -- 7.8.Molecular Mechanisms of Photoprotection -- 7.9.Conclusions -- References -- 8.Evolution, Diversity, and Habitats of Poikilohydrous Vascular Plants / Stefan Porembski -- 8.1.Introduction -- 8.2.Systematic Distribution and Evolutionary Aspects -- 8.2.1."Ferns" and "Fem Allies" -- 8.2.2.Angiosperms -- 8.3.Habitats and Geographic Distribution -- 8.4.Adaptive Traits -- 8.5.Economic Importance -- 8.6.Conservation -- References --
Contents note continued: 9.7.Recovery and Reestablishment of Physiological Activity of Vascular Homoiochlorophyllous and Poikilochlorophyllous Plants -- 9.8.Revival of Metabolism: Reassembly or Repair? -- 9.9.Constitutive and Induced Tolerance -- 9.10.Importance of Scale and Ecological Context -- References -- 10.Hydraulic Architecture of Vascular Plants / Ernst Steudle -- 10.1.Introduction -- 10.2.Water Uptake at Water Shortage: Role of Apoplast and of Composite Transport -- 10.3.The Nature of Water Movement in Roots -- 10.4.Pathways for Water and Solutes and Composite Transport -- 10.5.Roles of the Exo-and Endodermis -- 10.6.Physiological Consequences of Composite Transport -- 10.7.Consequences of Composite Transport for Growth Under Conditions of Severe Water Stress -- 10.8.Variability of Axial Hydraulic Resistance -- 10.9.Embolism and Refilling of Xylem Vessels -- 10.10.Leaf Hydraulics and Overall Leaf Resistance --
Contents note continued: 9.Ecophysiology of Homoiochlorophyllous and Poikilochlorophyllous Desiccation-Tolerant Plants and Vegetations / Hartmut K. Lichtenthaler -- 9.1.Introduction -- 9.2.Distribution and Evolutionary Aspects of Desiccation Tolerance in Plants -- 9.3.Habitats and Vegetation of Desiccation-Tolerant Plants -- 9.4.The Poikilochlorophyll Desiccation-Tolerance Strategy -- 9.5.The Desiccoplast, a Very Specialized, New Type of Chloroplast -- 9.5.1.Desiccation of Leaves and Desiccoplast Formation -- 9.5.2.Rehydration of Leaves and Resynthesis of Functional Chloroplasts -- 9.6.Differential Physiological Responses of Individual Vascular HDT and PDT Plants Under Desiccation -- 9.6.1.Chlorophyll Content and Chloroplast Ultrastructure -- 9.6.2.Abscisic Acid and Chlorophyll Breakdown -- 9.6.3.Photosystem II Electron Transport and Thermoluminescence -- 9.6.4.CO2 Assimilation -- 9.6.5.CO2 Gas Exchange and Respiration -- 9.6.6.Leaf Responses --
Machine generated contents note: pt. I Introduction -- 1.Introduction / Erwin Beck -- References -- pt. II The Organismic Level -- 2.Cyanobacteria: Habitats and Species / Burkhard Budel -- 2.1.Introduction -- 2.2.Cyanobacterial Anhydrobiosis and Resistance to Complete Desiccation -- 2.3.Habitats and Species -- 2.4.Conclusion -- References -- 3.Cyanobacteria: Multiple Stresses, Desiccation-Tolerant Photosynthesis and Di-nitrogen Fixation / Ulrich Luttge -- 3.1.Multiple Stresses and Desiccation-Tolerant Cyanobacteria -- 3.2.Cell Physiological Responses of Cyanobacteria to Stress of Drying Leading the Path to Desiccation -- 3.2.1.Compatible Solutes -- 3.2.2.Heat Shock and Water Stress Proteins -- 3.2.3.Sun Protectants -- 3.2.4.Membrane Lipids -- 3.2.5.Polynucleotide Stability and Repair -- 3.3.Photosynthesis -- 3.3.1.Special Features of Cyanobacterial Photosynthesis -- 3.3.2.Desiccation and Photoinhibition -- 3.3.3.Recovery of Photosynthesis During Rewetting After Desiccation --
Summary Desiccation tolerance was essential when plants first began to conquer land, roughly 400 million years ago. While most desiccation-tolerant plants belong to basal phylogenetic taxa, this capacity has also evolved among some vascular plant species. In this volume, renowned experts treat plant desiccation tolerance at the organismic as well as at the cellular level. The diversity of ecophysiological adaptations and acclimations of cyanobacteria, eukaryotic algae, mosses, and lichens is addressed in several chapters. The particular problems of vascular plants during dehydration/rehydration cycles
Notes Description based upon print version of record
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Drought-tolerant plants.
Plant-water relationships.
Plants -- Adaptation.
Plants -- Drought tolerance.
Author Bartels, Dorothea.
Beck, Erwin.
Lüttge, U. (Ulrich)
LC no. 2011931204
ISBN 9783642191053 (hard cover : alk. paper)
9783642191060 (eISBN)